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Abstract

The purpose of this paper is to study the unique continuation property for a Schrédinger-
type equation Ou = Vu on a domain in C", where the solution u may be a scalar function, or
a vector-valued function. While simple examples show that the unique continuation property
fails in general if the potential V € LP p < 2n, we first prove that, in the case when u is a
scalar function, the unique continuation property holds when V € LIQZ,Z and is O-closed. For
vector-valued smooth solutions, we establish the unique continuation property either when
Ve Lf oer P> 2n for m > 3, or when V' € L%‘C for n = 2. Finally, we discuss the unique
continuation property for some special cases where V' ¢ L?O”C, for instance, V is a constant
multiple of é

1 Introduction

Let Q be a domain in C*,n > 1. Let u : Q@ — CV be a H}

. be(€2) solution to the following
Schrodinger-type equation for the 0 operator:

Ou="Vu on (1.1)

in the sense of distributions. Here the potential V' is an N x N matrix of (0,1) forms with L7 ()
coefficients for some p > 1, and the space HF (Q) := W}?(Q), where W?(Q) is the standard

loc loc
Sobolev space of functions whose weak derivatives up to order k exist and belong to L} (€2). The
equation (1.1) arises naturally from various questions in CR and almost complex geometry and
plays an important role, for instance, while studying the boundary regularity and uniqueness of
CR-mappings, as well as uniqueness of J-holomorphic curves. See [2,8] et al.

In this paper, we study the (strong) unique continuation property of (1.1). Namely, we inves-
tigate whether a solution to (1.1) vanishing to infinite order in the L? sense at one point vanishes
identically. Here a function u € L} () is said to vanish to infinite order (or, be flat) in the L?
sense at a point zo € (2 if for all m > 1,

lim r_m/ lu(z)2dv, = 0,
r—0 |z—zo|<r :
where dv, is the Lebesgue measure in C" with respect to the dummy variable z. Otherwise, u is
said to vanish to a finite order in the L? sense at z.

As demonstrated by Example 2, the unique continuation property fails in general for (1.1) with

LP potentials, p < 2n = dimg(, the real dimension of the source domain €2. On the other hand,

loc
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it should be reminded that for the real Laplacian A, the unique continuation property has been
thoroughly understood. In particular, the works of Chanillo-Sawyer [5] and Wolff [17, 18] have
shown that for a domain Q C R? and V € L (2), the unique continuation property for H7 (€2
solutions of the differential inequality

|Au| < V|Vu| on Q (1.2)

holds when d = 2, 3,4, and fails in general when d > 5.

Surprisingly, due to the more rigid structure of d, the unique continuation property of (1.1)
holds for all d-closed L?"(Q2) potentials, n(= dimc$) > 1, as stated in the following theorem in
the case when their solutions are scalar functions. This dimension independence of the unique
continuation property for 0 stands in stark contrast to the aforementioned result for A. In view
of Example 2, it is also optimal.

Theorem 1.1. Let Q be a domain in C". Suppose u : Q — C with u € HE.(Q), and satisfies
Ou = Vu on Q in the sense of distributions for some 0-closed (0,1) form V € Li"(Q). If u

vanishes to infinite order in the L* sense at some 2y € ), then u vanishes identically.

The n = 1 case of the theorem was established in [15] (for arbitrary target dimension N,
see also Theorem 4.1); the real-valued solution case has been proved lately in [3] concerning the
gradient operator V, given the equivalence of 0 to V on such solutions. See also Corollary 5.7 for
a similar result for smooth functions satisfying the inequality |Ou| < V|u| for V € L2". The proof
of Theorem 1.1 relies on a classification result of weak solutions to (1.1) below.

Theorem 1.2. Let Q2 be a pseudoconvexr domain in C". Given a 0-closed (0,1) form V € Ly (9Q),

loc

there exists a function f € W22 (Q) such that every HL () solution u : Q@ — C to u = Vu
on Q in the sense of distributions is of the form e/h, for some holomorphic function h on Q. In

particular, u € W4(Q) for all 1 < q < 2n.

In the second part of the paper, we study the case when solutions to (1.1), or to the following
general inequality, are vector-valued (i.e., the target dimension N > 1):

|0u| < V]u| a.e. on Q. (1.3)

Here the potential V' is a nonnegative scalar function in L} () for some p > 1. With the help of
a complex polar coordinate formula in Lemma 4.2, we convert the unique continuation problem
on a source domain of dimension n to that on the complex plane, where [15] can readily take
into effect. As a consequence of this, we prove in Section 4 that for smooth solutions of (1.3),
the strong unique continuation property holds for Lj  potentials, p > 2n. Note that in smooth
category, a function vanishes to infinite order in the L? sense at a point if and only if it vanishes
to infinite order in the usual jet sense at that point, that is, all its derivatives vanish at that point,
see Lemma 3.2.

Theorem 1.3. Let 2 be a domain in C". Suppose u : ) — CN with u € C=(Q), and satisfies
|0u| < Vu| a.e. on Q for Ve Li (), p > 2n. If u vanishes to infinite order at some zy € €2,
then u vanishes identically.

Specifically, in the case when n = 2, we prove the unique continuation property of (1.3) for
L} . potentials, which, as indicated by Example 2, is sharp. The key to its proof in Section
7 incorporates a weighted estimate of the Cauchy integral established in [15] and a Carleman
inequality Proposition 6.3 for 0.



Theorem 1.4. Let Q2 be a domain in C2. Suppose u : Q@ — CN with u € C*(Q), and satisfies
|Ou] < Vu| a.e. onQ for some V € L} (Q). If u vanishes to infinite order at some zy € Q, then
u vanishes identically.

Due to Theorem 1.1 and Example 2, a natural question arises about whether the strong unique
continuation property holds for (1.3) with L7 potentials in the vector-valued solutions case for
any complex source dimension n. At this point we are only able to establish Theorem 1.4 for
n =2 (and in [15] for n = 1). It remains unclear whether this property continues to be true when
n > 3, in particular, in view of Wolff’s intricate counter-examples to (1.2) in higher dimensional
cases (with the real source dimension d > 5). See Remark 7.2 for unsolved questions along this
line in detail. However, it is noteworthy that the weak unique continuation property holds even
for L? . potentials, as shown in [15]. Namely, any solution to (1.3) vanishing on an open subset
must vanish identically.

Finally, despite the general failure of the unique continuation property for (1.3) with L7 |
potentials, p < 2n, we explore in Section 5 and Section 6 a special case where V ¢ L yet the
unique continuation property may still be anticipated. More precisely, V' here takes the form of
a constant multiple of ﬁ Interestingly, the cases of N = 1 and N > 2 under this context are
rather distinct: the unique continuation property holds true for all positive constant multiple C'

when N = 1, while when N > 2, this property fails in general if C' is large, see Example 5.

Theorem 1.5. Let Q be a domain in C" and 0 € Q. Let u : Q — CV with uw € C®(Q), and
satisfy |Ou| < %|u| a.e. on Q. Assume u vanishes to infinite order at 0 € €.

1). If N =1, then u vanishes identically.

2). If N >2and C < i, then u vanishes identically.

We point out that in the case when either N = 1 or n = 1, the smoothness assumption on u
above can be relaxed to u € H. (), as established in Theorem 5.1 and Theorem 6.1. See also
Theorem 5.5 for the unique continue when the potentials include both powers of ﬁ and Lebesgue
integrable functions. As an application, it allows us to refine an earlier result in [3] in terms of
V., which states that near any flat point of a smooth function u, either % ¢ L*", or u vanishes
identically there. More precisely, denote by u~1(0) the zero set of a smooth function u. We obtain

in Section 5 the following blowing-up property in terms of 9 near a flat point of w.

Corollary 1.6. Let Q be a domain in C". Suppose u : Q — C with u € C*(Q), and vanishes to
infinite order at some zy € Q. Then for every neighborhood U of zy in 2, either U \ u=1(0) = 0,

or 5ul?
/ | u|\2n dv = oo. (1.4)
U

\u—1(0) u

Remark 1.7. One can compare Corollary 1.6 with the following entertaining facts for compactly
supported functions on real and complex Fuclidean spaces.
1. [3, Theorem 2.7] For any u : R* — C with u € C>*°(RY),d > 2,

\V4 2
/ | u2] dv = o0.
supp u |U|

2. [15, Theorem 1.3] For any u : C" — C with u € C(C"),
3,12
/ 04l dv = 0. (1.5)

upp u |u|2

3



The power 2 in (1.5) is optimal, in view of an example uy € C°(C) in [12] by Mandache, which

satisfies for all p < 2, -
Sunl?
/ [Ouo dv < 0.
supp uo |u0‘p

Acknowledgments:  Part of this work by the first author was conducted while he was on
sabbatical leave visiting Huaqiao university in China in Spring 2024. He thanks Jianfei Wang for
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2 Moser-Trudinger inequality and applications

Let € be a bounded domain in RY. One of the technical aspects to prove our main theorems is a
chain rule for weak derivatives of the exponential of W9 functions. In this section, we shall show

Proposition 2.1. Let Q be a domain in R? and f € WEQ). Then e € WHI(Q) for all

loc loc

1 < g < d. Moreover, Ve! = e/NV f in the sense of distributions.

The W14 space is the critical Sobolev space where the Sobolev embedding theorem fails, and
instead is substituted by the classical Moser-Trudinger inequality. Recall that the Moser-
Trudinger inequality states (see [13]) that for a bounded domain © C R? with Lipschitz boundary,
there exists a positive constant C'y;7 depending only on d such that

L
sup / adhl ™y < Crrr|Q).
Q

ueWy (), IVl L4 g, <1
1
Here a4 := dw]"}, with wg_; the surface area of the unit sphere in R?, and |Q2| the volume of Q. Tt
turns out that the Moser-Trudinger inequality is exactly the key to prove Proposition 2.1. Before
proceeding to its proof, we first make use of the inequality to show that the exponential of 14
functions belongs to L? for all p < oo.

Lemma 2.2. Let Q be a bounded Lipschitz domain in R? and f € Wh4(Q). Then for any
1 <p<oo,elfl e LP(Q) with

C
QP ”f”W1 d(Q)
d—1

HemHLP(Q) < 2|9 e i 4 Cur|, (2.1)

for some constant Cq dependent only on . In particular, e/ € LP(Q). Equivalently, if log|g| €
Wh4(Q) for some function g on 2, then g,%} € LP(QQ) for all 1 < p < o0.

Proof. Extend f to be a function f on a bounded Lipschitz domain €2, such that Q cc €, |Q\ <
219, f € W, *(€) with )
IV lF ey < 1 l5ag) < Call i) (2.2)

with Cq dependent only on Q. See [7, pp. 268]|. Then

/Gp'fdvﬁ/epf'dUZ/ A, epfld”+/ e, e,
Q 9) ze,| f(2)|< ———E O PE—}

T d—1
“d “d



Since

Qg

dlv . . ) N di
{xeﬁz'ﬂ@“ ” dfj‘m}: v e plf)| < /@I L
VAl

we further have

P HVfHLd(Q) P H fHLd(Q)
1

~ _ — d
/ Pldy < e ea [e] +/ . gy <e ad |Q| + / el gy
Q mefz,p\f<x>|<7°‘d‘f<”' - Q

v e

Ld(m

where f; := . Note that f; € W,*(Q) and IV fill L@y = 1. Applying the Moser-Trudinger

inequality to f; in the last inequality and making use of (2.2), we get

P ”foLd(Q) CQP Hf”wl d(Q)

d—1 dl

/ep|f|dvg\(~2\ e +Cur | <2/Q| | e + Cur
Q

(2.1) is proved. Since |ef| < elfl| we further have ef € LP(Q). That g,gl] € LP(Q) follows
immediately from the facts that |g| = ¢/ and ‘?}‘ = e~/ with f :=log|g| € W4(Q). O

It is worthwhile to note that the integrability assumption f € W14(Q) in Lemma 2.2 is optimal
in view of the following example. Denote by B, the ball in RY centered at 0 with radius r.

Example 1. For each k € N, let

f=-In|z**z e B CR,d>2

A direct computation shows that for each 1 < p < oo, f € Lp(B%

By a result of Harvey-Polking in [9], we have Vf = 2k|§ on B
Consequently, V f € Lq(B%) for all g < d, and thus

|=[?

i the sense of distributions.

) and Vf = —22 on B%\{O}.

feW™(By) forall q<d.

1
2

On the other hand, since el = Iw\l% on B%,

ef ¢ LYNB1) if k>

N Q.

1
2

Proof of Proposition 2.1: Firstly, according to Lemma 2.2, e/ € L} (Q) for all 1 < p < co. By

Holder’s inequality, we have e’V f e Ll (Q)foreach 1 < ¢ < d, and for every Lipschitz subdomain
Q cc ),
17V Fll oy < NV Fllpaggylle? o ey < o0, (2.3)

where ¢* = ;quq. We next show that Ve/ = e/Vf in the sense of distributions. If so, then
el € W) by (2.3) for all 1 < ¢ < d, completing the proof.



Vel = e/Vf is trivially true if f € C*°(Q) as a consequence of the classical chain rule. For
general f € Wﬁ)cd(Q) and any Lipschitz subdomain Q cC Q, let f, € C°°(Q) converge to f in the
Wh4(Q) norm. By Sobolev embedding theorem, for all 1 < p < oo,

1f5 = Flloy = 0 (2.4)

as k — 0o. Moreover, applying Lemma 2.2 to f and f;, we have e/, et € LP(Q) forall 1 < p < oo,
with
le? | oy + e[l oy < € (2.5)

for some constant C' dependent only on || f|[yy1.aq): Q and p.

We claim that e — ef in the L? norm, 1 < p < oo, and Vet — e/Vf in the L7 norm,
1 < g < d. We shall need the following elementary inequality as a consequence of the mean-value
theorem: for z1, 2o € C,

z1

e?| < sup |e 0= |2y — 2] < Jel! 4 el |2y — 2.

te(0,1]

e

Making use of this inequality, Holder’s inequality and (2.4)-(2.5), we have for every 1 < p < oo,
e — 1l 1oy <N + e fi = Flll oy < Nl + el oy I fi = Fllzney =0 (2:6)
as k — 0o. Moreover, for each ¢ < d, noting that Vet = e/*V f;., by (2.5) and (2.6)

||V6fk - @foHLq(Q) SH(@fk - ef)vfk“m(fz) + ||€f(vfk - Vf)”Lq(fz)
<lle — el o @ IV fill paggy + e/ Ml o @y IV fi = V fll pagy = 0

as k — oo. The claim is proved. In particular, it immediately gives e/t — e/ and Velt — e/Vf
on Q in the sense of distributions, and thus Ve/ = ¢/V f on € in the sense of distributions. [

At the end of the section, we discuss another immediate application of Lemma 2.2. We say a
function f to be Holder at a point x, if there exists some « € (0,1] and a constant C' > 0 such
that for all  near z,

|f(x) = flzo)| < Cla — xo|*.
The following corollary states that the logarithms of such functions are never in W' near .
This also generalizes a similar result in [3] for Lipschitz functions (i.e., a = 1).

Corollary 2.3. Let f be a function near o in R and be Holder at xo. Then In|f(z) — f(xo)| ¢
Wi near ;.

Proof. Supposing not. Then by Lemma 2.2, for all 1 < p < oo,

1 — o~ In|f (@)= f(xo)| c LP

(@) = flzo)|
near xo. However, by the Holder property of f at xg, this would imply that there exist some
constants 0 < o« < 1 and C' > 0, such that

1 S 1
[f(x) = f(zo)|] — Clo —xol*

near xy, which is absurd when p > i O

eLr




3 Unique continuation for the target dimension N =1

In this section, we prove the classification Theorem 1.2 of weak solutions to 0, and the unique
continuation Theorem 1.1 for scalar solutions (N = 1) in a domain Q C C",n > 1. Let us first
point out that, given any solution u to (1.1), a formal computation leads to

0=0%u=udV —VAu=udV —uV AV =udV on Q.

In this sense, it is natural to assume V to be 0-closed in Theorem 1.2 and Theorem 1.1.

The following lemma concerning the local ellipticity of d for (0,1) data with W’/Zf coefficients
is well-known for p = 2 (see, for instance, [4, Theorem 4.5.1]). However, it seems difficult to find
a reference for general p,1 < p < oo. Since this property will be repeatedly used in the paper, we

present a proof below.

Lemma 3.1. Let Q be a domain in C", and 1 < p < co. Let V € L} () be a 9-closed (0,1)
form on Q. Then every solution to Of =V on Q in the sense of distributions belongs to VVllocp(Q)
Furthermore, if V.€ WFP(Q), k € ZT, then every solution to df = V on Q in the sense of

loc

distributions belongs to W P(Q).

Proof. Suppose the d-closed (0,1) form V belongs to W/P(Q) for some k € Z* U {0}. Since
the lemma is purely local, and every other solution is differed only by a holomorphic function,
it suffices to show that for any 2z, € €2, there exist a neighborhood U of 2, and a solution fy to
Of =V on U in the sense of distributions, such that f, € W/llf)jl’p (U). For simplicity, let zy = 0
and B, CC () for some r > 0. Let 1 be a compactly supported function on By, such that n =1
on B,.

Given a mollifier ¢ on C", we have V, := V * ¢, € C®(By,), V. is 0-closed on By, and V, — V
in the LP(By,) norm. Applying the Bochner-Martinelli representation formula to nV; on Bs,, one

has

N(2)Ve(z) = = [ dm(QVe(QO) A Bi(¢,2) =9 | n(Q)Ve(§) ABo(C,2), 2 € B,

BQT B2r

where for ¢ =0, 1,

By(¢,2) = — % 0:I'4(¢, 2)
with

o)1 oo

See, for instance, [11, Chapter I]. Note that d(nV.) = dn A V. on By, and supp 9y C By, \ B,.
Then restricting on B,

Ve(z) = —/B s () AVe(Q) ABi(C2) = | n(QVe(Q) ABo(G,2), 2 € By (3.1)

B27‘

By Young’s convolution inequality, there exists some C' > 0 such that

/B PO AV B ) - /B () AV(C) A B, 2)

QT\BT

< COWWVe = Vs,
LY(B,)



which goes to 0 as € — 0. Similarly,

as € — 0. Thus passing ¢ — 0 in (3.1), we obtain

—0
LY(B,)

/B n(C) AVA(C) A Bo(C,2) — /B n(Q) AV(C) A BolC )

V(z)=— / LOAVQABIC) =0 [ a@VO ARG on B (32)

Bar

in the sense of distributions.
Note that

- / IN(C) AV(C) ABi(C,2) € C=(B,),
B, \Br

and I is O-closed on B, by (3.2). By ellipticity of 0 for smooth data (see [4, Theorem 4.5.1]),
there exists a function vy € C*°(B,) such that dvy = I on B,. On the other hand, according to
the classical potential theory for the fundamental solution of Laplacian,

o = — / n(OV(C) A Bol(C, 2) € WHHP(B,).

Letting
fo =1 + Uo, (33)

we have fo € WFP(B,), and 0f, = V on B, in the sense of distributions by (3.2). O

loc

Proof of Theorem 1.2: Since V € L2 () is O-closed and (2 is pseudoconvex, by Héormander’s L2
theory (see [4, Theorem 4.3.5]), there exists f € L? (Q) satisfying f = V on Q. Noting that 0
is an elliptic operator of order one for (0,1) data by Lemma 3.1 and V € L?"(Q), we further get
f € WL (Q). Hence we can apply Proposition 2.1 to @ := e/, and obtain that @ € W,.9(Q) for
any ¢ < 2n, and 9 = —V'@ on €2 in the sense of distributions. In particular, @ € L} () for every
p < oo by Sobolev embedding theorem.

For each solution u € H} () to du = Vu, consider h := uii on €. Similarly as in the

proof of Proposition 2.1, we verify that Oh = 0 on € in the sense of distributions. In detail, let
ur € C*°(Q) = w in the H} norm. Then for every subdomain 2 CC 2, one has

10ux — Vull 2(qy = |0ur — dul| 2y — 0 (3.4)
as k — co. Moreover, by Sobolev embedding theorem

lur = < [lux = ullgriqy = 0 (3.5)

L%(Q)
as k — 0. On the other hand, by Holder’s inequality, for each k > 0, hy := uit satisfies
1 = Pl 1y = N(uw = w)ill ey < llue = ull ooy llll 2y = 0

as k — oo. Since u;, € C*°(Q), the product rule applies to give Oh; = Ouyti — Vgt on  in the
sense of distributions. Consequently, we use Hélder’s inequality again to infer

10hs I 1 6y =N10wrts — Vgl 11 6y < N[ (Qur — Vau)iill gy + IV (e — )il 1
<N0ux = Vull gz lall ey + IVl zanen s =l 2oy g 1l 2@y = 0
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as k — oo by (3.4)-(3.5). In particular, hy — h and dhy, — 0 on  in the sense of distributions.
Hence 0h = 0 on € in the sense of distributions. Altogether, u = @ 'h = e/h for some function
f € W2(Q), and some holomorphic function h on Q. Moreover, since e/ € WLI(Q) for all

1 < ¢ < 2n by Proposition 2.1, so does u. O

Recall that a smooth function vanishes to infinite order (or, is flat) in the jet sense at one point
if all its derivatives vanish at that point. We verify below that for smooth functions, flatness in
the jet sense and flatness in the L? sense are equivalent to each other.

Lemma 3.2. Let h be a smooth function near xo € R%. Then h vanishes to infinite order in the
L? sense at xq if and only if h vanishes to infinite order in the jet sense at xy. In particular, if h
is real-analytic near xq, then either h = 0 near o, or h vanishes to a finite order in the L? sense
at xg.

Proof. Without loss of generality let o = 0. If h vanishes to infinite order in the jet sense at
0, then for any m > 1, there exists a constant C' dependent on m such that |h(x)| < Clz|™ for
|z| << 1. Thus

rm/ |h(2)|?dv, < C’rm/ ttEmaE < Ot
|| <r 0

as 7 goes to 0. Namely, h vanishes to infinite order in the L? sense at 0.

Conversely, suppose that i vanishes to infinite order in the L? sense, but vanishes to a finite
order in the jet sense at 0. Let £ > 0 be the smallest integer such that the k-th order homogeneous
Taylor polynomial py of h is nonzero, and write h(z) = pi(x) + gry1(x), where gpiq(x) is the
remaining term of the Taylor expansion of h. By definition of py,

Co = T_Qk/ Ipi(x)|?dS, > 0
|z|=1
and is independent of r. Let ry be such that for all » < rg,

7”_%/ |1 (2)|?dS, < “
=1 8

Then for any 0 < r < ro, making use of the inequality |a + b|? > 2|a|? — 3[b|* for a,b € R, we have
/ Ih(z) [2dv, = / i1 / e(2) + Gosa ()P dS,dt
|z|<r 0 |z|=1
"o 3
> [ [ @ - @St
0 lz|=1

3co 7 1,0k 3¢ d+2k
> — R g = ——— _pdtER,
=78 /0 8(d+2k)

In particular,

3¢
lim r(d+2k)/ \h(z)Pdv, > —————
r—0 8
|z|<r

Contradiction!

If h is real-analytic near 0, then either h = 0 near 0, or h vanishes to a finite order in the jet
sense at 0, which is further equivalent to vanishing to a finite order in the L? sense at 0. The
proof is complete. O



Proof of Theorem 1.1: Again, let zo = 0, and 1o > 0 be small such that B,, C 2. For each solution
u(# 0) to du = Vu on B,, in the sense of distributions, by Theorem 1.2 there exists a holomorphic
function (% 0) on B,, and a function f € W*"(B,,) such that u = ¢/h on B,,. Applying Lemma

2.2 to —f, we further have h = ue™/ with e~/ € L% (B,,) in particular. Consequently, there exist
some constants C7, Cy > 0 such that

sup |h| < C; and / le™/2dv, < Cs.
|2|<3

|z <

Making use of Holder’s inequality, we have for any 0 <r < 2,

2 2
(/ \h|2dvz> <c? (/ \h\dvz> gcf/ |u|2dvz/ e/ [2do.
lz|<r |z|<r |z|<r |z|<r

< 01202/ lu|?dw,.
|z|<r

Since h vanishes to a finite order in the L? sense at 0 according to Lemma 3.2, the same holds
true for u. This completes the proof. O

The assumption V' € L" in Theorem 1.1 can not be relaxed in the following sense. For each
p < 2n, there exists a differential equation Ju = Vu with V' € L? . and this equation has a
nontrivial solution that vanishes to infinite order at a specific point.

Example 2. For each 1 < p < 2n, let € € (0, 27” — 1) and consider

~ ezdz
uvw=———u on By CC".
2| z[e+2 1

It is straightforward to verify that V = 2%, ¢ LP(B,). On the other hand, uy = e TF isa

2|z|et
nontrivial solution to the above equation that vanishes to infinite order in the L? sense at 0.

The proof to Theorem 1.1 indicates that solutions to (1.1) inherit the unique continuation
property from that of holomorphic functions. However, from the perspective of zero set, due to the
presence of the other factor e/, such solutions could exhibit a much larger zero set than holomorphic
functions do. In fact, the following example constructs a global potential V' € L?*(C"), such that
the “zero set” of every weak solution to (1.1) with this potential contains a countable dense set in
C". Tt is noteworthy that the exponential factor e/ no longer contributes zeros if V€ LY p > 2n,
since in this case f becomes continuous by Sobolev embedding theorem.

Example 3. Let ¢(z) = —In(—In|z]) on By cC", and x(>0) e CfO(B%) such that x =1 on Bi.
Then 4 := x¢ € WH*(C*) with 1» < 0 on C*. Given a countable dense set S := U2 {a;} C C",
consider

f(z) = ZZ‘jw(z —aj), z€C"
j=1

Clearly, f € W12"(C™). Further let

V:=09f on C"

10



CNote that supp V = C".) According to the construction of V and Theorem 1.2, any solution u to
Ou = Vu on C" in the sense of distributions is of the from efh, for some holomorphic function h
on C". Note that near every a; € S,

1
/| < ————-
[In [z — aj|
Hence for all a; € S,
lim v = 0.
Z—=raj

On the other hand, u vanishes to a finite order in the L? sense at these points, as a consequence
of Theorem 1.1.

As mentioned in the introduction, when the solutions are real-valued, Theorem 1.1 can be
reduced to a unique continuation property in [3] for the inequality [Vu| < Vu| with V' € L%, due
to the equivalence of 0 and V for real-valued functions. The following example constructed in [8]

by Gong and Rosay carries a family of continuous solutions to Ou = Vu with some V € L yet
% ¢ L2, as a result of which [3] fails to apply. Instead, we may use Theorem 1.1 to conclude

that none of the nontrivial solutions vanishes to infinite order at any point in the L? sense.

Example 4. Let {a;}32, be a sequence of distinct points in B% C C" convergent to 0 and consider
ou=Vu on By (3.6)

with

_ o
zdz

Vo N (z —ay)dz

1 1 -
220 2205 [In |2 — a2 557 K2z — gl In [2[2]In |2 — a2 T |2 — a2

Then'V € L2”(B%). (3.6) possesses a family of nontrivial solutions. In fact, for every holomorphic
function h on B%,

h _ h(2)

u'(z) = +
In |z|21_[j?’°:1 IIn|z — a;|?| 7

is continuous on By and satisfies ou="Vu on B%\{U;?‘;l{aj}U{O}}. Applying a general removable
singularity result in [9], one further has ou" = Vu" to hold on B%. Note that the zero set
(u")71(0) = U2 {a;} UL~ (0) U{0}. According to Theorem 1.1, none of the nontrivial solutions
to (3.6) vanishes to infinite order in the L? sense at any of these zero points.

In particular, if h in the expression of u” is a holomorphic function of one variable with zeroes
on By (say, h(z) = z1), then

_ oh
V| ~ || + || ~ <v+ %) .

Since % ¢ L*(B1) near any zero of h (see [3, Proposition 5.2]), we have

1
2
|Vuh|

L¥(B

loc

)7

where [3] fails to apply.

11



One can compare Theorem 1.1 with a uniqueness result for Lipschitz functions in [3]: if u is

Lipschitz and satisfies Vu = Vu for some V' € LQ”(B%) and u(0) = 0, then u = 0. Note that if

the holomorphic function A in Example 4 is nowhere zero on B%, then the continuous function u”

satisfies Vu" = V" for some V € L%E(B 1), and has infinite many zeros on B 1. The uniqueness

property fails for u” since it does not belong to Lip(B 1 ).

4 Unique continuation for L” potentials with p > 2n

In this section we prove Theorem 1.3 for smooth vector-valued solutions (where the target dimen-
sion N > 1) to [Ou|] < Vu| a.e. on a domain in C" with L? potentials, p > 2n. When N > 1, this

inequality with a solution u = (ug,...,uy) reads as
1 1
n N 2 N 2
o= (3 ) <7 (L) = v
j=1 k=1 k=1

The following unique continuation properties have been proved for L? = potentials.

loc

Theorem 4.1. [15] Let Q be a domain in C*. Suppose u : Q@ — CN with u € H},
satisfies |Ou| < V|u| a.e. on Q for some V € L2 ().

1). The weak unique continuation holds: if u vanishes in an open subset of ), then u vanishes
wdentically.

2). If n =1, then the (strong) unique continuation holds: if u vanishes to infinite order in the L*
sense at some zy € §2, then u vanishes identically.

(Q), and

In particular, since all the potentials under consideration in this paper belong to L? = away
from the reference point 2y, their unique continuation properties can be reduced to demonstrating
that solutions vanish near a neighborhood of zy, in view of the above weak unique continuation

property.

The complex polar coordinates change formula below will play a crucial rule throughout the
rest of the paper. One can find the formula that was used in [10, pp. 260] without proof. For the
convenience of the reader, we provide its proof below. Let S¢ be the unit sphere in R4 and D,
be the disk centered at 0 with radius ry in C. Recall that B, is the ball centered at 0 with radius
ro in C™.

Lemma 4.2. Let u € L'(B,,). Then for a.e. ¢ € S* ! |w|[*"2u(w() as a function of w € D,,

is in LY(D,,), with
/ z)dv, = / / [w|*"?u(wC)dv,dS;.
|z|<'r0 [<|=1 J|w|<ro

Proof. First, by the standard polar coordinates change,

27T/ u(z)dv, —27r/ / u(ré)dSedr
|z]<ro €1=1
:/ / / u(r&)dSedS,dr.
0 In|=1 J1£]=1

12



Here dS, and dS¢ are the Lebesgue measures over S' and S*"!, respectively. Since for each
ne st

dS; = dS, = ds
/|s s, /|< IRESLTE /IC s

we further have by Fubini’s theorem,

27T/ z)dv, = r2”1/ / u(r¢n)dScdS,dr
|Z\<To 0 In[=1 /(=1
/ u(r¢n)dS,drdS;
Inl=1

I
=,

cl=1Jo

7"/ \7"77\2” 2 u(r¢n)dS,drdS;
I¢|=1 0 [nl=1

/<| 1/| w2 u(wC)dv, dS;.
<ro

As seen below, Lemma 4.2 allows us to transform (1.3) with L] ,p > 2n potentials into new
ones with L? = potentials along almost all complex one-dimensional radial directions. On the
other hand, when the solutions under consideration are smooth, the flatness of these solutions
at a point naturally extends to their restrictions along those radial directions. Thus one can
completely convert the unique continuation property in the higher source dimension case to that

on the complex one dimension, where Theorem 4.1 can be applied.

O

Proof of Theorem 1.3: Without loss of generality, let zp = 0 and r > 0 be small such that
V € LP(B,). For each fixed ¢ € S?"!, let V(w) := ]w|%V(wC) and v(w) = w(w(),w € D,.
Since all jets of v vanish at 0 by assumption, the same holds true for all jets of v. Thus v vanishes
to infinite order at 0 in the L? sense by Lemma 3.2. Moreover, v satisfies

Bv(w)] = [¢ - Bu(wC)| < V(w)|u(wd)| = w7 V(w)(w)|, we D,

We claim that |w|_%f/(w) € L*(D,) for a.e. ¢ € 8?71, In fact, according to Lemma 4.2,

/ V) Pde. = o / / w2V (wQ)|PdvdS; = o- / / w)Pdvyds..
|z|<r [¢|=1 J|w|<r ™ [¢|=1 J|w|<r

In particular, V € LP(D,) for a.e. ¢ € S?»~'. By Holder’s inequality

/w|<r

p—

2 p=2
SV (w )‘ dvy < (/ yf/(w)|pde)” (/ |w|—2"p2p2”zde) ’
[w|<r Jw|<r

2 p=2
= (/ |‘~/(w)|7’de)p (/ |w|_4pn24de) "
lw|<r |lw|<r

4n—4
Since p > 2n, we have 2= < 2 and thus [ |w|” 72 dv,, < co. This, combined with the fact
D |w|<r

that V € LP(D,), gives the desired claim. Hence we can make use of Theorem 4.1 part 2) to
obtain v = 0 on D, for a.e. ¢ € S?"1. Thus u = 0 on B,. The weak unique continuation property
in Theorem 4.1 part 1) further applies to give u = 0 on (. ]
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5 Unique continuation for potentials involving - Tl for N =1
Let © be a domain in C" containing 0. Let u : Q — C¥ be an H} () solution to the inequality

|Ou| < £|u] a.e. on (2, (5.1)

E

where C' is some positive constant. Note that the potential € Tl ¢ L™ (Q). The goal of this section

is to show the unique continuation property for (5.1) if the target dimension N = 1 as stated
below.

Theorem 5.1. Let Q be a domain in C* and 0 € Q. Let u : Q — C with u € H._(Q), and

satisfies |Ou| < %M a.e. on Q) for some constant C' > 0. If u vanishes to infinite order in the L*
sense at 0, then u vanishes identically.

To prove Theorem 5.1, we need a few preparation lemmas.

Lemma 5.2. Let u € L? near 0 € C*, and vanishes to infinite order in the L? sense at 0. Then
for each M > 0, M% € L? near 0, and vanishes to infinite order in the L? sense at 0.

Proof. For each m > 1 and € > 0, by the L? flatness of u at 0, there exists § > 0 such that for
0<r<y,

/ lu|?dv, < er™M,
|z|<r
Then for 0 < r <4,

uf Ry :
| z|2M T Vs = Z dvz = Z M|, ) |ul"dv.
|2l <r j 27 271

J=1

22M] ) 0 22Mj Tm+2M
< /|Z| |ul*dv. < EZ F2M 9(m+2M)(—1)

<g7-1 j=1

_622M mZQ m(j—1) <€22M+1 m

In particular, i € L? near 0, and vanishes to infinite order in the L? sense at 0. O

Lemma 5.3. Let Q be a domain in C* and 0 € Q. Assume that u € L} (Q) and is holomorphic
in Q\ {0}. If u vanishes to infinite order in the L* sense at 0, then u = 0.

Proof. Write u in terms of the Laurent expansion u(z) = Y czn @o2® near 0 for some constants
Uy, @ = (v, ..., ) € Z". Then for each 0 < r << 1,

/ |u|2dUz :/ Z Aodp2 zﬁdvz — Z ‘aa’2/ ‘21|2a1,..’zn’2and1}z.
|z|<r |z|<r

l21<r o, gezn agzn
The L? integrability of u near 0 leads to a, = 0 for any o = (o, ..., ;) with some «a; < 0. Thus
u is holomorphic on 2. By Lemma 3.2, we further see u = 0. 0
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Lemma 5.4. Let €2 be a bounded domain in C" and 0 € Q). For any o, 8 > 0 with o + § = 2n,
there exists some constant C > 0 such that

d?)<
W o+, zeq.
/Qmw—z\ﬁ (L fhn f2[])

Proof. Fix z € Q and let t := |z|. Let rg > 0 be large such that Q C B,,. For all { € Q\ By,
€ =2 = [¢] =t = [¢] = 5I¢| = 5I¢]. Hence

dv dv¢ "0 dr
—gzﬁ/ _25</ —)wn < Cy(1+ |Int])
/(2\th C1*[¢ — 2|# \By 1C|2TFP o T el !

for some constant C; > 0 independent of z. On the other hand, writing z = tzy with 2, € S?"~!
and applying a change of coordinates ( = tn, we have

/ dve 1 / dv, _/ dv,
Bo [C1¥C = 2|7 tetB=2n fp nl*n — 20", [n]*|n — 20|”
dv dv
:/ a—nwf/ [P
oy TP o, T~

§2/3/ By oo / I <,
By |77| Bz\By n — 2ol

for some constant Cy > 0 independent of z. Altogether, we get the desired inequality. O

Let us begin with the case when the source dimension n = 1. In fact, we shall prove the unique
continuation for a larger class of potentials, which take on a hybrid form involving both powers of

| ; and Lebesgue integrable functions. Note that none of these potentials below belongs to L.

Theorem 5.5. Let € be a domain in C containing 0 and 1 < B < oco. Suppose u : 2 — C with
€ H. .(Q), and satisfies

loc ~

7
rlul a.e on Q
5

|Ou| <
2|

for some Ve lefc(Q) If w wvanishes to infinite order in the L? sense at 0, then u vanishes
tdentically.

Proof. Firstly, u € LfOC(Q) for all p < 0o by Sobolev embedding theorem. Since V € LlOC(Q) with

23 > 2, we have V|Z| Fue L (©\ {0}) for some py > 2 by Hélder’s inequality. Thus by the

loc

ellipticity Lemma 3.1, v € W,2P°(Q\ {0}) € C°(Q\ {0}), the space of continuous functions on

loc
2\ {0}, as a consequence of Sobolev embedding theorem.

For any subdomain Q CC Q containing 0, set S := {z € Q\ {0} : u(z) = 0} and let

V::{%“, on (Q\{0})\ 5;
0, on SU{0}.

Then B )
Oou=Vu on (2\{0})\S (5.2)
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in the sense of distributions. Since |V] < V|z\ ® e LI(Q) for all 1 < ¢ < 2, letting
1 V ~
f(z) ::—/ (Odg, z € (),
aC—z

one has B
of =V on Q

in the sense of distributions. See, for instance, [16]. Moreover, by Hélder’s inequality and Lemma
5.4 with n =1,

28—1

- dv 20 -
|fE] < WVl 2s (/ — ) SM(1+nlzl)), z€Q
G| — 2|75

for some constant M > 0. Hence there exists some C' > 0 such that

le”/| < ¢ on . (5.3)

2|

On the other hand, restricting on Q\{O} we have V € L7 (Q\ {0}). Hence f € W 2 (Q\ {0})
by Lemma 3.1, and further f € C°(Q2\ {0}). Applying Proposition 2.1 to f on Q\ {0}, we get

de~f = -V on Q\ {0} (5.4)

in the sense of distributions.

Let h == ue™ on Q\ {0}. Then h € C°(Q\ {0}). Repeating a similar argument as in the
proof of Theorem 1.2 to h on (Q\ {0})\ S, and “using (5.2) and (5.4), one can further show that
dh = 0 on (Q \ {0})\ S. Noting that f € C°(Q\ {0}), we have S = h~'(0) and so dh = 0 on
(Q\ {0}) \ A71(0). By Rado’s theorem, h is holomorphic on Q \ {0}. On the other hand, since u
vanishes to infinite order in the L? sense at 0, by (5.3) and Lemma 5.2, h € LlOC(Q) and vanishes
to infinite order in the L? sense at 0 as well. As a consequence of Lemma 5.3, h = 0 and thus

uw=0 on Q. O

When 5 = 1, the unique continuation holds due to Theorem 4.1 part 2). When 5 = oo,

by employing exactly the same argument as in the proof of Theorem 5.5, with the index %

replaced by 1 (= limg_ %), and V by a positive constant C, one can obtain the following
unique continuation property. As a result, it resolves Theorem 5.1 for n = 1.

Theorem 5.6. Let Q be a domain in C containing 0. Suppose u : Q@ — C with u € H. (), and
satisfies

|0u| < ’]u\ a.e. on §)

for some constant C > 0. If u vanishes to infinite order in the L? sense at 0, then u vanishes
wdentically.

Next, we address the case where the source dimension n > 1. We first explore some direct
applications of Theorem 5.5 to the unique continuation problem for smooth solutions.
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Proof of Corollary 1.6: Assume that (1.4) fails, say for zop = 0. Then there exists some V €
L (U) such that |0u| < V|u| on U. When n =1, u =0 on U due to Theorem 4.1 part 2). So we
assume n > 2. Let r be small such that B, C U. For each ¢ € §2* !, let V(w) := |w ":V(wo
and v(w) := u(w¢),w € D,. Then v vanishes to infinite order at 0 in the L? sense by Lemma 3.2,

and satisfies

[Dv(w)] = 1¢ - Ju(wO)| < V(wl)|u(w)| = |w| = V(w)[v(w)], we D,.

Moreover, for a.e. ¢ € S**~', V € L?"(D,) by Lemma 4.2. Theorem 5.5 with 3 = n applies to
give v =0 on D, for a.e. ¢ € S?"~!. Hence u = 0 on B,. The weak unique continuation property

Theorem in 4.1 part 1) further leads to u =0 on U. O

Theorem 5.5 also al}ows us to recover a similar result as in Theorem 1.1 for smooth solutions
without imposing the 0-closedness assumption on the potential.

Corollary 5.7. Let Q be a domain in C". Suppose u : Q — C with u € C*(Q), and satisfies
|Ou] < Vu| a.e. onQ for some V € L3"(Q). If u vanishes to infinite order at some zy € Q, then
u vanishes identically.

Proof. Let r be small such that B, C €. As in the proof of Corollary 1.6, for each fixed ¢ € St
let V(w) := |w|™ V(w¢) and v(w) := u(w¢),w € D,. Then v vanishes to infinite order at 0 in
the L? sense, and satisfies

|Gv(w)| < Jw|™ "% V(w)v(w)], we D,.

For a.e. ¢ € S?"1 we apply Theorem 5.5 to get v = 0 on D,. Hence u = 0 on B,. The weak
unique continuation property further gives u = 0. O

We are now in a position to prove Theorem 5.1 for H}._ solutions. We shall use the following
special case of [8, Theorem A] concerning the zero set of solutions to (1.3) with bounded potentials.

Theorem 5.8. [§] Let Q be a domain in C". Suppose u : Q — C with u € C°(Q), and satisfies
|0u| < Clu| a.e. on Q for some constant C > 0. Then the zero set u='(0) of u is a complex
analytic variety.

Proof of Theorem 5.1: Then = 1 case was proved in Theorem 5.6. So we assume n > 2. According
to Sobolev embedding theorem, u € L () for ¢* = % The ellipticity Lemma 3.1 of 0 and
the inequality |Ou| < |7(7||u] e L7 (2 \ {0}) further ensures u € Wh? (Q\ {0}), and thus u € L7~
with ¢ = 22 Employing a boot-strap argument eventually gives u € Whe(Q\ {0}) for some

qo > 2n. In particular, u € C°(Q\ {0}).
Set S :={z € Q\ {0} :u(z) =0}. Let

V.:{%“, on (2\{0})\ S;
10, on Su{o0}.

Then B
ou=Vu on (2\{0})\S (5.5)

in the sense of distributions. One can also verify that

OV =0 on (Q\{0}\S (5.6)
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in the sense of distributions. In fact, given a subdomain U cc (Q\ {0})\ S, since u € W% (Q\

loc

{0}) € C%2\ {0}), |u| > ¢ on U for some constant ¢ > 0. Letting {u;}52, € C*(U) — u in the
Wha(U) norm. In particular, u; — u in the C°(U) norm. Thus by passing to a subsequence, we

can assume |u;| > $ on U. Let V; := % on U. Clearly dV; = 0 on U. Moreover,
J
ou;  Ou
s —Vieao =52 -5 <o <[ (5-5)e
y o u Ll(U) Uj L1(U)

2= - 2
<2 o, Bl + s - uncomnaunu -0

as j — oo. In particular, V; — V in the sense of distributions. Thus the d-closedness passes onto
V on (Q\{O})\S
Since |V| < & o€ Ly (©2\ {0}), according to Theorem 5.8, S is a complex analytic variety in
Q\{0}. If S = Q\ {0}, then we are done. Otherwise, S is of complex dimension less than n.
Since n > 2, V € L? (). Applying a removable singularity result of Demailly [6, Lemma 6.9] to
(‘)'6)7
OV =0 on (5.7)

in the sense of distributions. On the other hand, noting that v € L? () and Vu € L} (Q), we
can apply Demailly’s result to (5.5) and obtain

Ou="Vu on (5.8)

in the sense of distributions.

Let fo,up and vy be as in (3.3) with V' defined above. Then 0fy = V on B, in the sense of
distributions for some r > 0. Restricting on B, \ {0}, use the ellipticity Lemma 3.1 to further
obtain fo € WLP(B, \ {0}) for all p < co. Hence we can apply Proposition 2.1 to fy on B, \ {0}
and get

de~fo = —e7V on B, \ {0} (5.9)

in the sense of distributions. Let
h:=ue ™ on B,\ {0}.

Repeating a similar argument as in the proof of Theorem 1.2 to h on B, \ {0}, and using (5.8)
and (5.9), one can further show that

Oh=0 on B,\{0}.

Namely, h is holomorphic on B, \ {0}.
On the other hand, by the construction of f; in Lemma 3.1 and the fact that |V] < % on €2,
we have vy to be bounded on Bz. Moreover, apply Lemma 5.4 to ug and get

d
|f0(z)|§c<1+/3 W) <M1+ |lnlz|l), =€ B:

for some constant M > 0. Hence there exists some C; > 0 such that
Ch
lef| < — on B:. (5.10)
2

e
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Since u vanishes to infinite order in the L? sense at 0, by (5.10) and Lemma 5.2, h € L2 (B,) and
vanishes to infinite order in the L? sense at 0 as well. As a consequence of Lemma .3, h =0 on
B, and thus u(= e/°h) = 0 on B,. Slnce Ly (2\{0}), applying the weak unique continuation

property of [Qu| < V]u| on Q\ {0} with LloC potentials, one further gets u = 0. O

Remark 5.9. It should be pointed out that, although the statement of [8, Theorem A] does not
explicitly mention it, the O-closedness of V as indicated in (5.7) near S has already been established
in its proof towards the analyticity of the zero set S. We opt to utilize the statement directly and
subsequently employ Demailly’s result to demonstrate it for the convenience of readers.

6 Unique continuation for potentials involving - Tl for N > 2

In this section, we study the unique continuation for a H} () solution u : Q — C¥ to the

loc
inequality

|Ou| < £|u] a.e. on §,

E

when the target dimension N > 2. As stated in Theorem 5.1, the unique continuation property
holds true when N = 1 for any constant multiple C' > 0 in the potential. However, when N > 2,
this property no longer holds in general if C' is large, as indicated by an example below of the first
author and Wolff in [14]. See also [1] by Alinhac and Baouendi for an alternative example.

Example 5. Let vy : C — C be the nontrivial smooth scalar function constructed in [14] that
vanishes to infinite order at 0 and satisfies |Avy| < %|VU0’ on C for some constant C* > 0.
Letting ug = (ORvg, OSvy), then ug : C — C? is smooth, vanishes to infinite order at 0, and
satisfies |Oug| < %|u0| on C.

In spite of Example 5, we shall prove that the unique continuation property still holds if the
constant multiple C' is small enough.

Theorem 6.1. Let Q be a domain in C and 0 € Q. Let u: Q — CV withu € H. (Q), and satisfy

|Ou| < |%]u| a.e. on € for some positive constant C < 5. If u vanishes to infinite order in the L
sense at 0, then u vanishes identically.

In order to prove Theorem 6.1, we need to establish a Carleman inequality for 0 (and its
conjugate d), making use of a Fourier analysis method, along with the following lemma.

Lemma 6.2. Let f: (—00,0) — CN with f € C>((—0,0)). Then for any \, k € R,
0

/0 e (0 + k) f(O)) dt > ()\+k)2/ e 2N f(t)dt.

Proof. Letting g(t) := e M f(t),t € (—o0,0), then its derivative g, = e (f; — Af), and further

MO+ R f = e (fit k) =g+ A+ E)g= (8 + A+ k)g.
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Consequently,

/0 e (8, + k) f (t)|2dt=/0 (D + X + k)g(t)]” dt

— 00 —0o0

0

- / g(B)Pdt+ (A + k) / lg(t) Pt + 2(\ + ) Re / (9u(t), g(0))dt

(kP [ e oPd 200 Re [ (00,9l

—00 —0o0

Note that since g € C2°((—o0,0)),

0~ [ OO ilayar =2ne (| Ooo<gt,g>dt) |

We obtain the desired inequality. O]

Proposition 6.3. For any u : C — CV with u € H(C) and supported outside a neighborhood of
0, and for any A € Z + {%},

)l ), < 16/ u)F (6.1)
C

C |Z|2>\+2 |Z|2>\

u Gu(z)]?
/ 2 |2A+2 / PN

Proof. We shall only prove (6.1) in terms of du, as Ou = du. Since the proof involves derivatives
on other variables as well, we use u, instead of du to emphasize its derivative with respect to z.

First, we consider u € C°(C \ {0}). Since the inequality is scaling-invariant, without loss
of generality we assume u is supported inside the unit disc D;. Let v(t,0) = u(e*¥?), t €
(—00,0),0 € (0,27). Write the Fourier series of v as

v(t,0) = w(t)e*,

keZ

and

where
1

vg(t) == — /O%U(t,ﬁ)e_ikedﬁ € CX((—00,0)).

2m
According to the Parseval’s identity,

/0 ot 0)Pd0 = 203 (1) (6.2)

kEeZ

Then under the coordinate change r = €', we have

2m 2m 0
/ Mmz / / “2u(r, 0)*drdd —/ /_OO 2Dty (¢, )2t dtdd
2
:/ / e M u(t, 0)[2dodt.
—o0 J0

20
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On the other hand, note that for z = e’e?, one has 20, = %(815 —i0p). Thus etty, = 2v, =
% (0, —i0g) v = %Zkez(at + k) (t)e*? and

/0 Cleto. (1, 0)[2d6 = 5 2 1@+ ko).

kEZ

Hence

/D 1 I” / / =2, (re®) 2drdd = / / e N2y (t,0)|2dtdd

:/ 6_2)‘t/ le'v, (¢, 0)|*dfdt = Z/ e (0, + k)uk(t)|? dt.
—00 0

kEZ
Applying Lemma 6.2 to v;, and making use of the fact that (A + k) > % whenever A € Z + {%}
and k € Z,
|u. (2 o2 o2
/Dl |z|2’\d 22 (k) oe(t)]? dt > — Z ok (t)|” dt

k:eZ k:eZ

2
:—/ / e PMu(t, 0)2dodt.
6 —o0 J0

Here in the last line we also used (6.2). The inequality (6.1) for u € C°(C \ {0}) is proved by
combining the above inequality with (6.3).

For general u € H'(C) in the proposition, let 7 > 0 be small such that the support of u
is outside D,. Pick a family u; € C*(C\ D,) — w in H*(C) norm. Then applying (6.1) to
uj € C*(C\ {0}), we get

()], \? u(z) —w ()], \? i ()2, \®
( c \2]2”2 dvz < oD \2]2”2 dvz + c |z\2>‘+2 dvz

<A ( /{C u(z) — uj(z)|2dvz>é 14 ( /C %d%)é.

: ()P )2
U, (2 2

dv,

+<<c |2[** U)

3 2 3
<r (/ |u(2) — (uj)z(Z)Idez) + ( %dvz) ,
C c |7
one thus has

1 1
[u@)P , \* A1, A u(2)* )2
( - ,Z‘2A+zdvz < (r +4r7) flu = | ey + 4 D dv, | .

Letting j — oo, we have the desired inequality (6.1) for u € H'(C) with support away from 0. [J

Since
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By employing an induction process along with a similar argument as in the proof to Proposition
6.3, one can further get the following higher order edition.

21



Corollary 6.4. Let k,l € ZT with k < I, and A\ € Z + {%} For any v : C — CN with
u € H} (C) and supported outside a neighborhood of 0, and any 2-tuples o = (a1, ), B = (B1, B2)

loc

with |a| =k, || =1 and a; < B;,j = 1,2, there exists a constant C' dependent only on | such that
|01 9%2u(2)|? 10810720 2) |2

|2 [P 20F) dv, < C B Uz

C C

Proof of Theorem 6.1: Let r > 0 be small such that Dy, CC €. Choose n € C°(C) with n =1
on D,, 0 <n<1land|Vn <2on Dy \D,, and n=0 outside Dy,. Let ¢y € C>(C) be such that
¢ =0in Dy, 0< ¢ <1and|Vy| <2on D, \ Dy, and ¢ = 1 outside Dy. For each k > 2 (thus
% < %), let ¥y = (k-) and uy, = Yenu. Then u;, € H'(C) with support outside D%.

Since C' < %, one can choose ¢y > 0 with
16(1 + 269)C* < 1. (6.4)
Making use of the following elementary inequality
(a+b+c)* <A +2)a* + 2+ HP* + 2+ e Hc?, forall a,b,c€R,e >0,

together with Proposition 6.3 and the inequality (5.1), we have for each A\ € Z + {%},

2 5 2
[, e i |, 2Fan
D2r ‘Z| D2r ‘Z|

[Yr(2)n(2)[?|0u(2)? _ |00 (2) Plu(2)
<16(1 4 2¢) /D% R dv, +16(2 + ;") T FE= dv,
5 2 2
gt [ R,
Do, \D, 2|22~
u(2)? _ O (2)|?[u(2)?
§16(1—|—260)02/D | ‘l;(’z))\’ dvz—|—16(2—|—€01)/ | k|<z‘>2|/\‘2< ) dv,
- In(2)*[u(2)?
16(2 ! | :
+16(2 + ¢, )/DQT\D,« EE= dv,

Noting that (6.4) holds, one can subtract 16(1 + 2¢)C? [}, - %—Q'Zdvz from both sides and get
|ui (2)[? / |[Vibi(2) ()] / [V (2)*lu(2)]*
dv, < C dv. dv. ) . 6.5
f, s, T e [, ). 09

16(2 + ¢ ")

where

Co = 0.
0T T 16(1 1 2e0)C2
Next, we show that
: Vr(2)Pluz)*
klglgo /DT B dv, = 0. (6.6)

Indeed, since V) is only supported on D% \ D 1,

JRLCECIETC Py S IO I TC PR Y
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as k — 00, as a consequence of the flatness of u at 0 in the L? sense.
Letting k — oo in (6.5), and making use of (6.6) and Fatou’s Lemma, we obtain that

2 2 2
[ By, g, [ VAN,
Do, Do, \D,

| 2]2A 2222
Since )
2 9 5
[ W [, 5 () [ upa
Do, |Z| Dr |Z| r D
2 2
" [Vn(2)|*|u(z)|? 1
n(2)|*|u(z
/D o, |z . < r2A—2/D . Vi (2)P|u(2)[Pdv.,
27 r - N
we have

2 Cor? 2 2
u(z)Pdv. < o [ [Op()Pu() P
Dy 2 Da,\D»
Letting A — oo, we see v = 0 on D:. Finally, apply the unique continuation property Theorem
4.1 part 1) to get u = 0. O

Proof of Theorem 1.5: Let r be small such that B, CC . For each fixed ¢ € S*"71 let v(w) :=
w(w(),w € D,. Then v vanishes to infinite order in the L? sense at 0 and satisfies

Bu(w)| = ¢ - Bu(wl)| < - Ju(we)] = fo(w)|, w e D,.

|wl |w]

For a.e. ¢ € S*7! we apply Theorem 5.1 when N = 1, or Theorem 6.1 when N > 2 and C < i,
to get v =0 on D,. Hence u = 0 on B, in either case. The weak unique continuation property
further applies to give u = 0. O

7 Proof of Theorem 1.4

In this section, we prove Theorem 1.4 — the unique continuation property for |Ju| < V]u| on
Q) C C?, with the target dimension N > 1, and V € L} . As already seen in Section 4, its proof

loc*
can be reduced to that of the following theorem on the complex plane.

Theorem 7.1. Let Q be a domain in C and 0 € Q. Suppose u : Q — CN with u € HL (), and
satisfies

0u| < 2|2V |u| a.e. on Q (7.1)

for some V€ L} (Q). If u vanishes to infinite order in the L* sense at 0, then u vanishes
identically.

Note that the N = 1 case in Theorem 7.1 is a special case that has been proved in Theorem
5.5. On the other hand, since |z|"2V ¢ L2 () given a general V € L% (), Theorem 4.1 does
not apply.

The key element in proving Theorem 7.1 involves an idea in [15] that utilizes the Cauchy
integral, coupled with the technique employed in establishing Theorem 6.1. To begin with, let
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us recall a representation formula for v € H'(C) with compact support in terms of the Cauchy
kernel:

u(z) = % /C fu_(gg dve, ae. z€C. (7.2)

See, for instance, [15, Lemma 3.1]. Denote by || f[|12 () the weighted L?(Q2) norm of a function f
on ) C C with respect to a weight V' > 0, with

flzgior = ([ 1FPV(Ian.)

It was proved in [15, Theorem 2.2] that, given a positive function V' € L?*(C), the Riesz potential

RO
Ilf_/<c|c—-|d”C

is a bounded operator from L7,_,(C) to L3,(C). More precisely, there exists a universal constant
Cp such that for any f € L?_,(C),

11Nz ) < CollVIl2oll fllzz (7.3)

1(©)

Proof of Theorem 7.1: Fix an r > 0 small such that Dy, CC €2, and

4
7T2

Vxp, + < 5543
H LA(C) 3207

,
1422

where Cj is the universal constant in (7.3), and xp, is the characteristic function for D,. Replacing

V' by Vxp, + 17, we have (7.1) holds on Dy, with V' € LY(C),

V>0on C, V>C, on Dy, (7.4)

for some C). > 0 dependent only on r, and

(7.5)

We shall show that u =0 on Dr:.
Let n and ¢ be as defined in the proof of Theorem 6.1. Then uy := Ypnu € H'(C) and is
supported inside Ds,. \ D1 So is 7% for each m € Z*. Applying (7.2) to Z&, we obtain

dur ()
—dv
/<c (z=Q¢m "
and with V := V2, one has

e ! L[l N’
[, v < [ ([t ) e <
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Make use of (7.3) with respect to the weight V to further infer
2
/ ‘uk(j)‘ V(z)dv,
D2T 2]

0 8
WV [ ‘”’“ lQmV )( Ny,

03 4 PR, [ PG, B ),
2 IVl (/D M o P ) ”/DQT\DT 2P () )

=:A+B+C.
(7.6)

Note that for B, by the inequalities (7.1) and (7.5)
% ¥k (2) P[u(2)]? 1 |ur(2) ]
B< W—gnvn;@/ aw, < L [ m@F,

|Z|2m+1 z = 32 Do, |Z|2m+1

r

Thus we apply Theorem 6.3 with A\ = m — % to have

A 2
peb [ uCr,,

=2 Jp,, P

1[0 [e(z)n(2)P[ou(z)? 1 [ |0g(2)Plu(2)? 1 |0n(2)[?|u(2)[?
< /DQT dv, + 5 /T dv, + /DQT\DT dv,

-9 |Z|2m—l |Z|2m—1 2 |Z|2m—1

1 ug (2)]? - / |00k (2) P |u(2)[? 1/ |0n(2) *u(z)]”
<= - dv.
_Q/Dzr BER V(z)dv. + 5 2 /. [2[2mT dv. + 2 Jouin, 2|21 v

::11+IQ+]3.

Here we used (7.1) in the third inequality. Combining (7.6) with the above,

2 ~
/ e 5 g, < A4 Ot I+ L+ I,
D2r

Similarly as in the proof to (6.6) along with the fact that V' > C? on Ds,, one has
lim A= lim I, =0.

k—o0 k—o0

Together, after passing k — oo and using Fatou’s Lemma in (7.7), we obtain

W~ z)dv 9 (n(=)u(2)) v |0n(2)*|u(2)? v
/DQT |22 Vizdv. < /Dzr\DT |2[2mV (2) do: +/Dzr\Dr |2 [2m-1 dv,. (7.8)

Now multiply two sides of (7.8) by ™. On the left hand side,

" n(2) Plu(z) - Ly
/DQT EER V<Z>dvz2/D% o AV ()dv: 22 /%\ (2)]2V (2)dv..
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On the right hand side, using the fact that V > C? on D,, again,

2m| 9 2 2m| 9 2 2
[ UG, [ I,
Do, \D; Dar\Dy

|22V (2) |2

1 _ -
<L 8 ((=)ul2)) Pdv. + 7 / V() Puz) Pdvs < Cllulop,

2
s DZT\DT‘ DQ’V‘\DT

for some C, dependent only on 7. Thus

2 277 ~ 2
2 [ )PV () < ol
Dy
Letting m — oo and making use of the positivity of V on D:, we have u =0 on Dz. The proof
is thus complete as a consequence of the weak unique continuation property. O

Proof of Theorem 1./: As in the proof to Theorem 1.3 yet with n = 2 and p = 4, let zp = 0
and r > 0 be small such that V € L*(B,). For each fixed ¢ € 3, let V(w) := |w|2V (w() and
v(w) := u(w¢),w € D,. Then v vanishes to infinite order at 0 in the L? sense. Moreover, v
satisfies

|v(w)| < Jw|"2V (w)|v(w)], w € D,.

Note that for a.e. ¢ € S3, V € L*(D,) by Lemma 4.2. According to Theorem 7.1, v = 0 on D, for
a.e. ( € S3. Hence u =0 on B,. Apply the weak unique continuation property to get u =0. [

Remark 7.2. The following two questions still remain open. In particular, with an approach
similar as in the proof to Theorem 1.4, the resolution of Question 1 can be converted to that of
Question 2.

1. LetQ be a domain in C",n > 3 and N > 2. Suppose u : 0 — CN is smooth on Q and satisfies
|Ou] < V|u| a.e. onQ for some V € L™ (Q). If u vanishes to infinite order at some zy € Q, does
u vanish identically?

2. LetQ be a domain in C containing 0, and n, N € Z+ withn > 3, N > 2. Suppose u : Q — CV
n—1

is smooth on Q0 and satisfies |Ou| < 2|~ V|u| a.e. on Q for some V € L?" (). If u vanishes to
infinite order at 0 € €, does u vanish identically?
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