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Abstract

The purpose of this paper is to study the unique continuation property for a Schrödinger-
type equation ∂̄u = V u on a domain in Cn, where the solution u may be a scalar function, or
a vector-valued function. While simple examples show that the unique continuation property
fails in general if the potential V ∈ Lp, p < 2n, we first prove that, in the case when u is a
scalar function, the unique continuation property holds when V ∈ L2n

loc and is ∂̄-closed. For
vector-valued smooth solutions, we establish the unique continuation property either when
V ∈ Lp

loc, p > 2n for n ≥ 3, or when V ∈ L2n
loc for n = 2. Finally, we discuss the unique

continuation property for some special cases where V /∈ L2n
loc, for instance, V is a constant

multiple of 1
|z| .

1 Introduction

Let Ω be a domain in Cn, n ≥ 1. Let u : Ω → CN be a H1
loc(Ω) solution to the following

Schrödinger-type equation for the ∂̄ operator:

∂̄u = V u on Ω (1.1)

in the sense of distributions. Here the potential V is an N ×N matrix of (0, 1) forms with Lp
loc(Ω)

coefficients for some p ≥ 1, and the space Hk
loc(Ω) := W k,2

loc (Ω), where W
k,p
loc (Ω) is the standard

Sobolev space of functions whose weak derivatives up to order k exist and belong to Lp
loc(Ω). The

equation (1.1) arises naturally from various questions in CR and almost complex geometry and
plays an important role, for instance, while studying the boundary regularity and uniqueness of
CR-mappings, as well as uniqueness of J-holomorphic curves. See [2, 8] et al.

In this paper, we study the (strong) unique continuation property of (1.1). Namely, we inves-
tigate whether a solution to (1.1) vanishing to infinite order in the L2 sense at one point vanishes
identically. Here a function u ∈ L2

loc(Ω) is said to vanish to infinite order (or, be flat) in the L2

sense at a point z0 ∈ Ω if for all m ≥ 1,

lim
r→0

r−m

∫
|z−z0|<r

|u(z)|2dvz = 0,

where dvz is the Lebesgue measure in Cn with respect to the dummy variable z. Otherwise, u is
said to vanish to a finite order in the L2 sense at z0.

As demonstrated by Example 2, the unique continuation property fails in general for (1.1) with
Lp
loc potentials, p < 2n = dimRΩ, the real dimension of the source domain Ω. On the other hand,
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it should be reminded that for the real Laplacian ∆, the unique continuation property has been
thoroughly understood. In particular, the works of Chanillo-Sawyer [5] and Wolff [17, 18] have
shown that for a domain Ω ⊂ Rd and V ∈ Ld

loc(Ω), the unique continuation property for H2
loc(Ω)

solutions of the differential inequality

|∆u| ≤ V |∇u| on Ω (1.2)

holds when d = 2, 3, 4, and fails in general when d ≥ 5.
Surprisingly, due to the more rigid structure of ∂̄, the unique continuation property of (1.1)

holds for all ∂̄-closed L2n
loc(Ω) potentials, n(= dimCΩ) ≥ 1, as stated in the following theorem in

the case when their solutions are scalar functions. This dimension independence of the unique
continuation property for ∂̄ stands in stark contrast to the aforementioned result for ∆. In view
of Example 2, it is also optimal.

Theorem 1.1. Let Ω be a domain in Cn. Suppose u : Ω → C with u ∈ H1
loc(Ω), and satisfies

∂̄u = V u on Ω in the sense of distributions for some ∂̄-closed (0, 1) form V ∈ L2n
loc(Ω). If u

vanishes to infinite order in the L2 sense at some z0 ∈ Ω, then u vanishes identically.

The n = 1 case of the theorem was established in [15] (for arbitrary target dimension N ,
see also Theorem 4.1); the real-valued solution case has been proved lately in [3] concerning the
gradient operator ∇, given the equivalence of ∂̄ to ∇ on such solutions. See also Corollary 5.7 for
a similar result for smooth functions satisfying the inequality |∂̄u| ≤ V |u| for V ∈ L2n

loc. The proof
of Theorem 1.1 relies on a classification result of weak solutions to (1.1) below.

Theorem 1.2. Let Ω be a pseudoconvex domain in Cn. Given a ∂̄-closed (0, 1) form V ∈ L2n
loc(Ω),

there exists a function f ∈ W 1,2n
loc (Ω) such that every H1

loc(Ω) solution u : Ω → C to ∂̄u = V u
on Ω in the sense of distributions is of the form efh, for some holomorphic function h on Ω. In
particular, u ∈ W 1,q

loc (Ω) for all 1 ≤ q < 2n.

In the second part of the paper, we study the case when solutions to (1.1), or to the following
general inequality, are vector-valued (i.e., the target dimension N ≥ 1):

|∂̄u| ≤ V |u| a.e. on Ω. (1.3)

Here the potential V is a nonnegative scalar function in Lp
loc(Ω) for some p ≥ 1. With the help of

a complex polar coordinate formula in Lemma 4.2, we convert the unique continuation problem
on a source domain of dimension n to that on the complex plane, where [15] can readily take
into effect. As a consequence of this, we prove in Section 4 that for smooth solutions of (1.3),
the strong unique continuation property holds for Lp

loc potentials, p > 2n. Note that in smooth
category, a function vanishes to infinite order in the L2 sense at a point if and only if it vanishes
to infinite order in the usual jet sense at that point, that is, all its derivatives vanish at that point,
see Lemma 3.2.

Theorem 1.3. Let Ω be a domain in Cn. Suppose u : Ω → CN with u ∈ C∞(Ω), and satisfies
|∂̄u| ≤ V |u| a.e. on Ω for V ∈ Lp

loc(Ω), p > 2n. If u vanishes to infinite order at some z0 ∈ Ω,
then u vanishes identically.

Specifically, in the case when n = 2, we prove the unique continuation property of (1.3) for
L4
loc potentials, which, as indicated by Example 2, is sharp. The key to its proof in Section

7 incorporates a weighted estimate of the Cauchy integral established in [15] and a Carleman
inequality Proposition 6.3 for ∂̄.
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Theorem 1.4. Let Ω be a domain in C2. Suppose u : Ω → CN with u ∈ C∞(Ω), and satisfies
|∂̄u| ≤ V |u| a.e. on Ω for some V ∈ L4

loc(Ω). If u vanishes to infinite order at some z0 ∈ Ω, then
u vanishes identically.

Due to Theorem 1.1 and Example 2, a natural question arises about whether the strong unique
continuation property holds for (1.3) with L2n

loc potentials in the vector-valued solutions case for
any complex source dimension n. At this point we are only able to establish Theorem 1.4 for
n = 2 (and in [15] for n = 1). It remains unclear whether this property continues to be true when
n ≥ 3, in particular, in view of Wolff’s intricate counter-examples to (1.2) in higher dimensional
cases (with the real source dimension d ≥ 5). See Remark 7.2 for unsolved questions along this
line in detail. However, it is noteworthy that the weak unique continuation property holds even
for L2

loc potentials, as shown in [15]. Namely, any solution to (1.3) vanishing on an open subset
must vanish identically.

Finally, despite the general failure of the unique continuation property for (1.3) with Lp
loc

potentials, p < 2n, we explore in Section 5 and Section 6 a special case where V /∈ L2n
loc, yet the

unique continuation property may still be anticipated. More precisely, V here takes the form of
a constant multiple of 1

|z| . Interestingly, the cases of N = 1 and N ≥ 2 under this context are
rather distinct: the unique continuation property holds true for all positive constant multiple C
when N = 1, while when N ≥ 2, this property fails in general if C is large, see Example 5.

Theorem 1.5. Let Ω be a domain in Cn and 0 ∈ Ω. Let u : Ω → CN with u ∈ C∞(Ω), and
satisfy |∂̄u| ≤ C

|z| |u| a.e. on Ω. Assume u vanishes to infinite order at 0 ∈ Ω.

1). If N = 1, then u vanishes identically.
2). If N ≥ 2 and C < 1

4
, then u vanishes identically.

We point out that in the case when either N = 1 or n = 1, the smoothness assumption on u
above can be relaxed to u ∈ H1

loc(Ω), as established in Theorem 5.1 and Theorem 6.1. See also
Theorem 5.5 for the unique continue when the potentials include both powers of 1

|z| and Lebesgue

integrable functions. As an application, it allows us to refine an earlier result in [3] in terms of

∇, which states that near any flat point of a smooth function u, either |∇u|
|u| /∈ L2n, or u vanishes

identically there. More precisely, denote by u−1(0) the zero set of a smooth function u. We obtain
in Section 5 the following blowing-up property in terms of ∂̄ near a flat point of u.

Corollary 1.6. Let Ω be a domain in Cn. Suppose u : Ω → C with u ∈ C∞(Ω), and vanishes to
infinite order at some z0 ∈ Ω. Then for every neighborhood U of z0 in Ω, either U \ u−1(0) = ∅,
or ∫

U\u−1(0)

|∂̄u|2n

|u|2n
dv = ∞. (1.4)

Remark 1.7. One can compare Corollary 1.6 with the following entertaining facts for compactly
supported functions on real and complex Euclidean spaces.
1. [3, Theorem 2.7] For any u : Rd → C with u ∈ C∞

c (Rd), d ≥ 2,∫
supp u

|∇u|2

|u|2
dv = ∞.

2. [15, Theorem 1.3] For any u : Cn → C with u ∈ C∞
c (Cn),∫

supp u

|∂̄u|2

|u|2
dv = ∞. (1.5)
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The power 2 in (1.5) is optimal, in view of an example u0 ∈ C∞
c (C) in [12] by Mandache, which

satisfies for all p < 2, ∫
supp u0

|∂̄u0|p

|u0|p
dv <∞.

Acknowledgments: Part of this work by the first author was conducted while he was on
sabbatical leave visiting Huaqiao university in China in Spring 2024. He thanks Jianfei Wang for
invitation, and the host institution for hospitality and excellent research environment.

2 Moser-Trudinger inequality and applications

Let Ω be a bounded domain in Rd. One of the technical aspects to prove our main theorems is a
chain rule for weak derivatives of the exponential of W 1,d functions. In this section, we shall show

Proposition 2.1. Let Ω be a domain in Rd and f ∈ W 1,d
loc (Ω). Then ef ∈ W 1,q

loc (Ω) for all
1 ≤ q < d. Moreover, ∇ef = ef∇f in the sense of distributions.

The W 1,d space is the critical Sobolev space where the Sobolev embedding theorem fails, and
instead is substituted by the classical Moser-Trudinger inequality. Recall that the Moser-
Trudinger inequality states (see [13]) that for a bounded domain Ω ⊂ Rd with Lipschitz boundary,
there exists a positive constant CMT depending only on d such that

sup
u∈W 1,d

0 (Ω), ∥∇u∥
Ld(Ω)

≤1

∫
Ω

eαd|u|
d

d−1
dv ≤ CMT |Ω|.

Here αd := dw
1

d−1

d−1 , with wd−1 the surface area of the unit sphere in Rd, and |Ω| the volume of Ω. It
turns out that the Moser-Trudinger inequality is exactly the key to prove Proposition 2.1. Before
proceeding to its proof, we first make use of the inequality to show that the exponential of W 1,d

functions belongs to Lp for all p <∞.

Lemma 2.2. Let Ω be a bounded Lipschitz domain in Rd and f ∈ W 1,d(Ω). Then for any
1 ≤ p <∞, e|f | ∈ Lp(Ω) with

∥∥e|f |∥∥p
Lp(Ω)

≤ 2|Ω|

eCΩpd∥f∥d
W1,d(Ω)

αd−1
d + CMT

 , (2.1)

for some constant CΩ dependent only on Ω. In particular, ef ∈ Lp(Ω). Equivalently, if log |g| ∈
W 1,d(Ω) for some function g on Ω, then g, 1

g
∈ Lp(Ω) for all 1 ≤ p <∞.

Proof. Extend f to be a function f̃ on a bounded Lipschitz domain Ω̃, such that Ω ⊂⊂ Ω̃, |Ω̃| ≤
2|Ω|, f̃ ∈ W 1,d

0 (Ω̃) with
∥∇f̃∥d

Ld(Ω̃)
≤ ∥f̃∥d

W 1,d(Ω̃)
≤ CΩ∥f∥dW 1,d(Ω), (2.2)

with CΩ dependent only on Ω. See [7, pp. 268]. Then∫
Ω

ep|f |dv ≤
∫
Ω̃

ep|f̃ |dv =

∫
x∈Ω̃,|f̃(x)|≤

pd−1∥∇f̃∥d
Ld(Ω̃)

αd−1
d

ep|f̃ |dv +

∫
x∈Ω̃,|f̃(x)|>

pd−1∥∇f̃∥d
Ld(Ω̃)

αd−1
d

ep|f̃ |dv.
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Since {
x ∈ Ω̃ : |f̃(x)| >

pd−1∥∇f̃∥d
Ld(Ω̃)

αd−1
d

}
=

x ∈ Ω̃ : p|f̃(x)| ≤ αd|f̃(x)|
d

d−1

∥∇f̃∥
d

d−1

Ld(Ω̃)

 ,

we further have∫
Ω

ep|f |dv ≤ e

pd∥∇f̃∥d
Ld(Ω̃)

αd−1
d |Ω̃|+

∫
x∈Ω̃,p|f̃(x)|≤αd|f̃(x)|

d
d−1

∥∇f̃∥
d

d−1

Ld(Ω̃)

ep|f̃ |dv ≤ e

pd∥∇f̃∥d
Ld(Ω̃)

αd−1
d |Ω̃|+

∫
Ω̃

eαd|f1|
d

d−1
dv,

where f1 :=
f̃

∥∇f̃∥
Ld(Ω̃)

. Note that f1 ∈ W 1,d
0 (Ω̃) and ∥∇f1∥Ld(Ω̃) = 1. Applying the Moser-Trudinger

inequality to f1 in the last inequality and making use of (2.2), we get

∫
Ω

ep|f |dv ≤ |Ω̃|

e pd∥∇f̃∥d
Ld(Ω̃)

αd−1
d + CMT

 ≤ 2|Ω|

eCΩpd∥f∥d
W1,d(Ω)

αd−1
d + CMT

 .

(2.1) is proved. Since |ef | ≤ e|f |, we further have ef ∈ Lp(Ω). That g, 1
g

∈ Lp(Ω) follows

immediately from the facts that |g| = ef and 1
|g| = e−f with f := log |g| ∈ W 1,d(Ω).

It is worthwhile to note that the integrability assumption f ∈ W 1,d(Ω) in Lemma 2.2 is optimal
in view of the following example. Denote by Br the ball in Rd centered at 0 with radius r.

Example 1. For each k ∈ N, let

f = − ln |x|2k, x ∈ B 1
2
⊂ Rd, d ≥ 2.

A direct computation shows that for each 1 ≤ p < ∞, f ∈ Lp(B 1
2
) and ∇f = −2kx

|x|2 on B 1
2
\ {0}.

By a result of Harvey-Polking in [9], we have ∇f = −2kx
|x|2 on B 1

2
in the sense of distributions.

Consequently, ∇f ∈ Lq(B 1
2
) for all q < d, and thus

f ∈ W 1,q(B 1
2
) for all q < d.

On the other hand, since ef = 1
|x|2k on B 1

2
,

ef /∈ L1(B 1
2
) if k ≥ d

2
.

Proof of Proposition 2.1: Firstly, according to Lemma 2.2, ef ∈ Lp
loc(Ω) for all 1 ≤ p < ∞. By

Hölder’s inequality, we have ef∇f ∈ Lq
loc(Ω) for each 1 ≤ q < d, and for every Lipschitz subdomain

Ω̃ ⊂⊂ Ω,
∥ef∇f∥Lq(Ω̃) ≤ ∥∇f∥Ld(Ω̃)∥e

f∥Lq∗ (Ω̃) <∞, (2.3)

where q∗ := dq
d−q

. We next show that ∇ef = ef∇f in the sense of distributions. If so, then

ef ∈ W 1,q
loc (Ω) by (2.3) for all 1 ≤ q < d, completing the proof.

5



∇ef = ef∇f is trivially true if f ∈ C∞(Ω) as a consequence of the classical chain rule. For
general f ∈ W 1,d

loc (Ω) and any Lipschitz subdomain Ω̃ ⊂⊂ Ω, let fk ∈ C∞(Ω̃) converge to f in the
W 1,d(Ω̃) norm. By Sobolev embedding theorem, for all 1 ≤ p <∞,

∥fk − f∥Lp(Ω̃) → 0 (2.4)

as k → ∞. Moreover, applying Lemma 2.2 to f and fk, we have e
f , efk ∈ Lp(Ω̃) for all 1 ≤ p <∞,

with
∥ef∥Lp(Ω̃) + ∥efk∥Lp(Ω̃) ≤ C (2.5)

for some constant C dependent only on ∥f∥W 1,d(Ω̃), Ω̃ and p.

We claim that efk → ef in the Lp norm, 1 ≤ p < ∞, and ∇efk → ef∇f in the Lq norm,
1 ≤ q < d. We shall need the following elementary inequality as a consequence of the mean-value
theorem: for z1, z2 ∈ C,

|ez1 − ez2 | ≤ sup
t∈[0,1]

∣∣etz1+(1−t)z2
∣∣ |z1 − z2| ≤

∣∣e|z1| + e|z2|
∣∣ |z1 − z2|.

Making use of this inequality, Hölder’s inequality and (2.4)-(2.5), we have for every 1 ≤ p <∞,

∥efk − ef∥Lp(Ω̃) ≤∥(e|fk| + e|f |)|fk − f |∥Lp(Ω̃) ≤ ∥e|fk| + e|f |∥L2p(Ω̃)∥fk − f∥L2p(Ω̃) → 0 (2.6)

as k → ∞. Moreover, for each q < d, noting that ∇efk = efk∇fk, by (2.5) and (2.6)

∥∇efk − ef∇f∥Lq(Ω̃) ≤∥(efk − ef )∇fk∥Lq(Ω̃) + ∥ef (∇fk −∇f)∥Lq(Ω̃)

≤∥efk − ef∥Lq∗ (Ω̃)∥∇fk∥Ld(Ω̃) + ∥ef∥Lq∗ (Ω̃)∥∇fk −∇f∥Ld(Ω̃) → 0

as k → ∞. The claim is proved. In particular, it immediately gives efk → ef and ∇efk → ef∇f
on Ω̃ in the sense of distributions, and thus ∇ef = ef∇f on Ω̃ in the sense of distributions.

At the end of the section, we discuss another immediate application of Lemma 2.2. We say a
function f to be Hölder at a point x0 if there exists some α ∈ (0, 1] and a constant C > 0 such
that for all x near x0,

|f(x)− f(x0)| ≤ C|x− x0|α.
The following corollary states that the logarithms of such functions are never in W 1,d near x0.
This also generalizes a similar result in [3] for Lipschitz functions (i.e., α = 1).

Corollary 2.3. Let f be a function near x0 in Rd and be Hölder at x0. Then ln |f(x)− f(x0)| /∈
W 1,d near x0.

Proof. Supposing not. Then by Lemma 2.2, for all 1 ≤ p <∞,

1

|f(x)− f(x0)|
= e− ln |f(x)−f(x0)| ∈ Lp

near x0. However, by the Hölder property of f at x0, this would imply that there exist some
constants 0 < α < 1 and C > 0, such that

1

|f(x)− f(x0)|
≥ 1

C|x− x0|α
∈ Lp

near x0, which is absurd when p ≥ d
α
.
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3 Unique continuation for the target dimension N = 1

In this section, we prove the classification Theorem 1.2 of weak solutions to ∂̄, and the unique
continuation Theorem 1.1 for scalar solutions (N = 1) in a domain Ω ⊂ Cn, n ≥ 1. Let us first
point out that, given any solution u to (1.1), a formal computation leads to

0 = ∂̄2u = u∂̄V − V ∧ ∂̄u = u∂̄V − uV ∧ V = u∂̄V on Ω.

In this sense, it is natural to assume V to be ∂̄-closed in Theorem 1.2 and Theorem 1.1.
The following lemma concerning the local ellipticity of ∂̄ for (0, 1) data with W k,p

loc coefficients
is well-known for p = 2 (see, for instance, [4, Theorem 4.5.1]). However, it seems difficult to find
a reference for general p, 1 < p <∞. Since this property will be repeatedly used in the paper, we
present a proof below.

Lemma 3.1. Let Ω be a domain in Cn, and 1 < p < ∞. Let V ∈ Lp
loc(Ω) be a ∂̄-closed (0, 1)

form on Ω. Then every solution to ∂̄f = V on Ω in the sense of distributions belongs to W 1,p
loc (Ω).

Furthermore, if V ∈ W k,p
loc (Ω), k ∈ Z+, then every solution to ∂̄f = V on Ω in the sense of

distributions belongs to W k+1,p
loc (Ω).

Proof. Suppose the ∂̄-closed (0, 1) form V belongs to W k,p
loc (Ω) for some k ∈ Z+ ∪ {0}. Since

the lemma is purely local, and every other solution is differed only by a holomorphic function,
it suffices to show that for any z0 ∈ Ω, there exist a neighborhood U of z0 and a solution f0 to
∂̄f = V on U in the sense of distributions, such that f0 ∈ W k+1,p

loc (U). For simplicity, let z0 = 0
and B2r ⊂⊂ Ω for some r > 0. Let η be a compactly supported function on B2r such that η = 1
on Br.

Given a mollifier ϕ on Cn, we have Vϵ := V ∗ ϕϵ ∈ C∞(B2r), Vϵ is ∂̄-closed on B2r and Vϵ → V
in the Lp(B2r) norm. Applying the Bochner-Martinelli representation formula to ηVϵ on B2r, one
has

η(z)Vϵ(z) = −
∫
B2r

∂̄(η(ζ)Vϵ(ζ)) ∧B1(ζ, z)− ∂̄

∫
B2r

η(ζ)Vϵ(ζ) ∧B0(ζ, z), z ∈ B2r,

where for q = 0, 1,
Bq(ζ, z) = − ∗ ∂ζΓq(ζ, z)

with

Γq(ζ, z) =
(n− 2)!

q!2q+1πn

1

|ζ − z|2n−2

(
n∑

j=1

dζ̄jdzj

)q

.

See, for instance, [11, Chapter I]. Note that ∂̄(ηVϵ) = ∂̄η ∧ Vϵ on B2r and supp ∂̄η ⊂ B2r \ Br.
Then restricting on Br,

Vϵ(z) = −
∫
B2r\Br

∂̄η(ζ) ∧ Vϵ(ζ) ∧B1(ζ, z)− ∂̄

∫
B2r

η(ζ)Vϵ(ζ) ∧B0(ζ, z), z ∈ Br. (3.1)

By Young’s convolution inequality, there exists some C > 0 such that∥∥∥∥∫
B2r\Br

∂̄η(ζ) ∧ Vϵ(ζ) ∧B1(ζ, z)−
∫
B2r\Br

∂̄η(ζ) ∧ V (ζ) ∧B1(ζ, z)

∥∥∥∥
L1(Br)

≤ C∥Vϵ − V ∥L1(B2r),
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which goes to 0 as ϵ→ 0. Similarly,∥∥∥∥∫
B2r

η(ζ) ∧ Vϵ(ζ) ∧B0(ζ, z)−
∫
B2r

η(ζ) ∧ V (ζ) ∧B0(ζ, z)

∥∥∥∥
L1(Br)

→ 0

as ϵ→ 0. Thus passing ϵ→ 0 in (3.1), we obtain

V (z) = −
∫
B2r\Br

∂̄η(ζ) ∧ V (ζ) ∧B1(ζ, z)− ∂̄

∫
B2r

η(ζ)V (ζ) ∧B0(ζ, z) on Br (3.2)

in the sense of distributions.
Note that

I := −
∫
B2r\Br

∂̄η(ζ) ∧ V (ζ) ∧B1(ζ, z) ∈ C∞(Br),

and I is ∂̄-closed on Br by (3.2). By ellipticity of ∂̄ for smooth data (see [4, Theorem 4.5.1]),
there exists a function v0 ∈ C∞(Br) such that ∂̄v0 = I on Br. On the other hand, according to
the classical potential theory for the fundamental solution of Laplacian,

u0 := −
∫
Br

η(ζ)V (ζ) ∧B0(ζ, z) ∈ W k+1,p(Br).

Letting
f0 := v0 + u0, (3.3)

we have f0 ∈ W k+1,p
loc (Br), and ∂̄f0 = V on Br in the sense of distributions by (3.2).

Proof of Theorem 1.2: Since V ∈ L2
loc(Ω) is ∂̄-closed and Ω is pseudoconvex, by Hörmander’s L2

theory (see [4, Theorem 4.3.5]), there exists f ∈ L2
loc(Ω) satisfying ∂̄f = V on Ω. Noting that ∂̄

is an elliptic operator of order one for (0, 1) data by Lemma 3.1 and V ∈ L2n
loc(Ω), we further get

f ∈ W 1,2n
loc (Ω). Hence we can apply Proposition 2.1 to ũ := e−f , and obtain that ũ ∈ W 1,q

loc (Ω) for
any q < 2n, and ∂̄ũ = −V ũ on Ω in the sense of distributions. In particular, ũ ∈ Lp

loc(Ω) for every
p <∞ by Sobolev embedding theorem.

For each solution u ∈ H1
loc(Ω) to ∂̄u = V u, consider h := uũ on Ω. Similarly as in the

proof of Proposition 2.1, we verify that ∂̄h = 0 on Ω in the sense of distributions. In detail, let
uk ∈ C∞(Ω) → u in the H1

loc norm. Then for every subdomain Ω̃ ⊂⊂ Ω, one has

∥∂̄uk − V u∥L2(Ω̃) = ∥∂̄uk − ∂̄u∥L2(Ω̃) → 0 (3.4)

as k → ∞. Moreover, by Sobolev embedding theorem

∥uk − u∥
L

2n
n−1 (Ω̃)

≤ ∥uk − u∥H1(Ω̃) → 0 (3.5)

as k → 0. On the other hand, by Hölder’s inequality, for each k ≥ 0, hk := ukũ satisfies

∥hk − h∥L1(Ω̃) = ∥(uk − u)ũ∥L1(Ω̃) ≤ ∥uk − u∥L2(Ω̃)∥ũ∥L2(Ω̃) → 0

as k → ∞. Since uk ∈ C∞(Ω), the product rule applies to give ∂̄hk = ∂̄ukũ − V ukũ on Ω in the
sense of distributions. Consequently, we use Hölder’s inequality again to infer

∥∂̄hk∥L1(Ω̃) =∥∂̄ukũ− V ukũ∥L1(Ω̃) ≤ ∥(∂̄uk − V u)ũ∥L1(Ω̃) + ∥V (uk − u)ũ∥L1(Ω̃)

≤∥∂̄uk − V u∥L2(Ω̃)∥ũ∥L2(Ω̃) + ∥V ∥L2n(Ω̃)∥uk − u∥
L

2n
n−1 (Ω̃)

∥ũ∥L2(Ω̃) → 0
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as k → ∞ by (3.4)-(3.5). In particular, hk → h and ∂̄hk → 0 on Ω in the sense of distributions.
Hence ∂̄h = 0 on Ω in the sense of distributions. Altogether, u = ũ−1h = efh for some function
f ∈ W 2n

loc(Ω), and some holomorphic function h on Ω. Moreover, since ef ∈ W 1,q
loc (Ω) for all

1 ≤ q < 2n by Proposition 2.1, so does u.

Recall that a smooth function vanishes to infinite order (or, is flat) in the jet sense at one point
if all its derivatives vanish at that point. We verify below that for smooth functions, flatness in
the jet sense and flatness in the L2 sense are equivalent to each other.

Lemma 3.2. Let h be a smooth function near x0 ∈ Rd. Then h vanishes to infinite order in the
L2 sense at x0 if and only if h vanishes to infinite order in the jet sense at x0. In particular, if h
is real-analytic near x0, then either h ≡ 0 near x0, or h vanishes to a finite order in the L2 sense
at x0.

Proof. Without loss of generality let x0 = 0. If h vanishes to infinite order in the jet sense at
0, then for any m ≥ 1, there exists a constant C dependent on m such that |h(x)| ≤ C|x|m for
|x| << 1. Thus

r−m

∫
|x|<r

|h(x)|2dvx ≤ Cr−m

∫ r

0

td−1+2mdt ≤ Crm+d → 0

as r goes to 0. Namely, h vanishes to infinite order in the L2 sense at 0.
Conversely, suppose that h vanishes to infinite order in the L2 sense, but vanishes to a finite

order in the jet sense at 0. Let k > 0 be the smallest integer such that the k-th order homogeneous
Taylor polynomial pk of h is nonzero, and write h(x) = pk(x) + qk+1(x), where qk+1(x) is the
remaining term of the Taylor expansion of h. By definition of pk,

c0 := r−2k

∫
|x|=1

|pk(x)|2dSx > 0

and is independent of r. Let r0 be such that for all r < r0,

r−2k

∫
|x|=1

|qk+1(x)|2dSx ≤ c0
8
.

Then for any 0 < r < r0, making use of the inequality |a+ b|2 ≥ 3
4
|a|2 − 3|b|2 for a, b ∈ R, we have∫

|x|<r

|h(x)|2dvx =

∫ r

0

td−1

∫
|x|=1

|pk(x) + qk+1(x)|2dSxdt

≥
∫ r

0

td−1

∫
|x|=1

3

4
|pk(x)|2 − 3|qk+1(x)|2dSxdt

≥ 3c0
8

∫ r

0

td−1t2kdt =
3c0

8(d+ 2k)
rd+2k.

In particular,

lim
r→0

r−(d+2k)

∫
|x|<r

|h(x)|2dvx ≥ 3c0
8(d+ 2k)

.

Contradiction!
If h is real-analytic near 0, then either h ≡ 0 near 0, or h vanishes to a finite order in the jet

sense at 0, which is further equivalent to vanishing to a finite order in the L2 sense at 0. The
proof is complete.
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Proof of Theorem 1.1: Again, let z0 = 0, and r0 > 0 be small such that Br0 ⊂ Ω. For each solution
u( ̸≡ 0) to ∂̄u = V u on Br0 in the sense of distributions, by Theorem 1.2 there exists a holomorphic
function h( ̸≡ 0) on Br0 and a function f ∈ W 1,2n

loc (Br0) such that u = efh on Br0 . Applying Lemma
2.2 to −f , we further have h = ue−f with e−f ∈ L2

loc(Br0) in particular. Consequently, there exist
some constants C1, C2 > 0 such that

sup
|z|< r0

2

|h| ≤ C1 and

∫
|z|< r0

2

|e−f |2dvz ≤ C2.

Making use of Hölder’s inequality, we have for any 0 < r < r0
2
,(∫

|z|<r

|h|2dvz
)2

≤ C2
1

(∫
|z|<r

|h|dvz
)2

≤ C2
1

∫
|z|<r

|u|2dvz
∫
|z|<r

|e−f |2dvz

≤ C2
1C2

∫
|z|<r

|u|2dvz.

Since h vanishes to a finite order in the L2 sense at 0 according to Lemma 3.2, the same holds
true for u. This completes the proof.

The assumption V ∈ L2n
loc in Theorem 1.1 can not be relaxed in the following sense. For each

p < 2n, there exists a differential equation ∂̄u = V u with V ∈ Lp
loc, and this equation has a

nontrivial solution that vanishes to infinite order at a specific point.

Example 2. For each 1 ≤ p < 2n, let ϵ ∈ (0, 2n
p
− 1) and consider

∂̄u =
ϵzdz̄

2|z|ϵ+2
u on B1 ⊂ Cn.

It is straightforward to verify that V := ϵzdz̄
2|z|ϵ+2 ∈ Lp(B1). On the other hand, u0 = e−

1
|z|ϵ is a

nontrivial solution to the above equation that vanishes to infinite order in the L2 sense at 0.

The proof to Theorem 1.1 indicates that solutions to (1.1) inherit the unique continuation
property from that of holomorphic functions. However, from the perspective of zero set, due to the
presence of the other factor ef , such solutions could exhibit a much larger zero set than holomorphic
functions do. In fact, the following example constructs a global potential V ∈ L2n(Cn), such that
the “zero set” of every weak solution to (1.1) with this potential contains a countable dense set in
Cn. It is noteworthy that the exponential factor ef no longer contributes zeros if V ∈ Lp

loc, p > 2n,
since in this case f becomes continuous by Sobolev embedding theorem.

Example 3. Let ϕ(z) = − ln(− ln |z|) on B 1
3
⊂ Cn, and χ(≥ 0) ∈ C∞

c (B 1
3
) such that χ = 1 on B 1

6
.

Then ψ := χϕ ∈ W 1,2n(Cn) with ψ ≤ 0 on Cn. Given a countable dense set S := ∪∞
j=1{aj} ⊂ Cn,

consider

f(z) :=
∞∑
j=1

2−jψ(z − aj), z ∈ Cn.

Clearly, f ∈ W 1,2n(Cn). Further let

V := ∂̄f on Cn.
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(Note that supp V = Cn.) According to the construction of V and Theorem 1.2, any solution u to
∂̄u = V u on Cn in the sense of distributions is of the from efh, for some holomorphic function h
on Cn. Note that near every aj ∈ S,

|ef | ≤ 1

|ln |z − aj||2
−j .

Hence for all aj ∈ S,
lim
z→aj

u = 0.

On the other hand, u vanishes to a finite order in the L2 sense at these points, as a consequence
of Theorem 1.1.

As mentioned in the introduction, when the solutions are real-valued, Theorem 1.1 can be
reduced to a unique continuation property in [3] for the inequality |∇u| ≤ V |u| with V ∈ L2n

loc, due
to the equivalence of ∂̄ and ∇ for real-valued functions. The following example constructed in [8]
by Gong and Rosay carries a family of continuous solutions to ∂̄u = V u with some V ∈ L2n

loc, yet
|∇u|
|u| /∈ L2n

loc, as a result of which [3] fails to apply. Instead, we may use Theorem 1.1 to conclude

that none of the nontrivial solutions vanishes to infinite order at any point in the L2 sense.

Example 4. Let {aj}∞j=1 be a sequence of distinct points in B 1
2
⊂ Cn convergent to 0 and consider

∂̄u = V u on B 1
2

(3.6)

with

V :=
zdz̄

|z|2| ln |z|2|2Π∞
j=1 |ln |z − aj|2|

1
j2

+
∞∑
k=1

(z − ak)dz̄

k2|z − ak|2 ln |z|2 |ln |z − ak|2|
1
k2

+1 Πj ̸=k |ln |z − aj|2|
1
j2

.

Then V ∈ L2n(B 1
2
). (3.6) possesses a family of nontrivial solutions. In fact, for every holomorphic

function h on B 1
2
,

uh(z) :=
h(z)

ln |z|2Π∞
j=1 |ln |z − aj|2|

1
j2

is continuous on B 1
2
and satisfies ∂̄u = V u on B 1

2
\{∪∞

j=1{aj}∪{0}}. Applying a general removable

singularity result in [9], one further has ∂̄uh = V uh to hold on B 1
2
. Note that the zero set

(uh)−1(0) = ∪∞
j=1{aj} ∪ h−1(0) ∪ {0}. According to Theorem 1.1, none of the nontrivial solutions

to (3.6) vanishes to infinite order in the L2 sense at any of these zero points.
In particular, if h in the expression of uh is a holomorphic function of one variable with zeroes

on B 1
2
(say, h(z) = z1), then

|∇uh| ≈ |∂̄uh|+ |∂uh| ≈
(
V +

|∂h|
|h|

)
|uh|.

Since ∂h
h
/∈ L2(B 1

2
) near any zero of h (see [3, Proposition 5.2]), we have

|∇uh|
|uh|

/∈ L2n
loc(B 1

2
),

where [3] fails to apply.
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One can compare Theorem 1.1 with a uniqueness result for Lipschitz functions in [3]: if u is
Lipschitz and satisfies ∇u = V u for some V ∈ L2n(B 1

2
) and u(0) = 0, then u ≡ 0. Note that if

the holomorphic function h in Example 4 is nowhere zero on B 1
2
, then the continuous function uh

satisfies ∇uh = V uh for some V ∈ L2n
loc(B 1

2
), and has infinite many zeros on B 1

2
. The uniqueness

property fails for uh since it does not belong to Lip(B 1
2
).

4 Unique continuation for Lp potentials with p ≥ 2n

In this section we prove Theorem 1.3 for smooth vector-valued solutions (where the target dimen-
sion N ≥ 1) to |∂̄u| ≤ V |u| a.e. on a domain in Cn with Lp potentials, p ≥ 2n. When N ≥ 1, this
inequality with a solution u = (u1, . . . , uN) reads as

|∂̄u| :=

(
n∑

j=1

N∑
k=1

|∂̄juk|2
) 1

2

≤ V

(
N∑
k=1

|uk|2
) 1

2

:= V |u|.

The following unique continuation properties have been proved for L2
loc potentials.

Theorem 4.1. [15] Let Ω be a domain in Cn. Suppose u : Ω → CN with u ∈ H1
loc(Ω), and

satisfies |∂̄u| ≤ V |u| a.e. on Ω for some V ∈ L2
loc(Ω).

1). The weak unique continuation holds: if u vanishes in an open subset of Ω, then u vanishes
identically.
2). If n = 1, then the (strong) unique continuation holds: if u vanishes to infinite order in the L2

sense at some z0 ∈ Ω, then u vanishes identically.

In particular, since all the potentials under consideration in this paper belong to L2
loc away

from the reference point z0, their unique continuation properties can be reduced to demonstrating
that solutions vanish near a neighborhood of z0, in view of the above weak unique continuation
property.

The complex polar coordinates change formula below will play a crucial rule throughout the
rest of the paper. One can find the formula that was used in [10, pp. 260] without proof. For the
convenience of the reader, we provide its proof below. Let Sd be the unit sphere in Rd+1, and Dr0

be the disk centered at 0 with radius r0 in C. Recall that Br0 is the ball centered at 0 with radius
r0 in Cn.

Lemma 4.2. Let u ∈ L1(Br0). Then for a.e. ζ ∈ S2n−1, |w|2n−2u(wζ) as a function of w ∈ Dr0

is in L1(Dr0), with ∫
|z|<r0

u(z)dvz =
1

2π

∫
|ζ|=1

∫
|w|<r0

|w|2n−2u(wζ)dvwdSζ .

Proof. First, by the standard polar coordinates change,

2π

∫
|z|<r0

u(z)dvz =2π

∫ r0

0

r2n−1

∫
|ξ|=1

u(rξ)dSξdr

=

∫ r0

0

r2n−1

∫
|η|=1

∫
|ξ|=1

u(rξ)dSξdSηdr.

12



Here dSη and dSξ are the Lebesgue measures over S1 and S2n−1, respectively. Since for each
η ∈ S1, ∫

|ξ|=1

u(rξ)dSξ =

∫
|ζ|=1

u(rζη)|η|dSζ =

∫
|ζ|=1

u(rζη)dSζ ,

we further have by Fubini’s theorem,

2π

∫
|z|<r0

u(z)dvz =

∫ r0

0

r2n−1

∫
|η|=1

∫
|ζ|=1

u(rζη)dSζdSηdr

=

∫
|ζ|=1

∫ r0

0

r2n−1

∫
|η|=1

u(rζη)dSηdrdSζ

=

∫
|ζ|=1

∫ r0

0

r

∫
|η|=1

|rη|2n−2u(rζη)dSηdrdSζ

=

∫
|ζ|=1

∫
|w|<r0

|w|2n−2u(wζ)dvwdSζ .

As seen below, Lemma 4.2 allows us to transform (1.3) with Lp
loc, p > 2n potentials into new

ones with L2
loc potentials along almost all complex one-dimensional radial directions. On the

other hand, when the solutions under consideration are smooth, the flatness of these solutions
at a point naturally extends to their restrictions along those radial directions. Thus one can
completely convert the unique continuation property in the higher source dimension case to that
on the complex one dimension, where Theorem 4.1 can be applied.

Proof of Theorem 1.3: Without loss of generality, let z0 = 0 and r > 0 be small such that

V ∈ Lp(Br). For each fixed ζ ∈ S2n−1, let Ṽ (w) := |w|
2n−2

p V (wζ) and v(w) := u(wζ), w ∈ Dr.
Since all jets of u vanish at 0 by assumption, the same holds true for all jets of v. Thus v vanishes
to infinite order at 0 in the L2 sense by Lemma 3.2. Moreover, v satisfies

|∂̄v(w)| = |ζ · ∂̄u(wζ)| ≤ V (wζ)|u(wζ)| = |w|−
2n−2

p Ṽ (w)|v(w)|, w ∈ Dr.

We claim that |w|−
2n−2

p Ṽ (w) ∈ L2(Dr) for a.e. ζ ∈ S2n−1. In fact, according to Lemma 4.2,∫
|z|<r

|V (z)|pdvz =
1

2π

∫
|ζ|=1

∫
|w|<r

|w|2n−2|V (wζ)|pdvwdSζ =
1

2π

∫
|ζ|=1

∫
|w|<r

|Ṽ (w)|pdvwdSζ .

In particular, Ṽ ∈ Lp(Dr) for a.e. ζ ∈ S2n−1. By Hölder’s inequality∫
|w|<r

∣∣∣|w|− 2n−2
p Ṽ (w)

∣∣∣2 dvw ≤
(∫

|w|<r

|Ṽ (w)|pdvw
) 2

p
(∫

|w|<r

|w|−
2n−2

p
2p
p−2dvw

) p−2
p

=

(∫
|w|<r

|Ṽ (w)|pdvw
) 2

p
(∫

|w|<r

|w|−
4n−4
p−2 dvw

) p−2
p

.

Since p > 2n, we have 4n−4
p−2

< 2 and thus
∫
|w|<r

|w|−
4n−4
p−2 dvw < ∞. This, combined with the fact

that Ṽ ∈ Lp(Dr), gives the desired claim. Hence we can make use of Theorem 4.1 part 2) to
obtain v = 0 on Dr for a.e. ζ ∈ S2n−1. Thus u = 0 on Br. The weak unique continuation property
in Theorem 4.1 part 1) further applies to give u ≡ 0 on Ω.
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5 Unique continuation for potentials involving 1
|z| for N = 1

Let Ω be a domain in Cn containing 0. Let u : Ω → CN be an H1
loc(Ω) solution to the inequality

|∂̄u| ≤ C

|z|
|u| a.e. on Ω, (5.1)

where C is some positive constant. Note that the potential C
|z| /∈ L2n

loc(Ω). The goal of this section

is to show the unique continuation property for (5.1) if the target dimension N = 1 as stated
below.

Theorem 5.1. Let Ω be a domain in Cn and 0 ∈ Ω. Let u : Ω → C with u ∈ H1
loc(Ω), and

satisfies |∂̄u| ≤ C
|z| |u| a.e. on Ω for some constant C > 0. If u vanishes to infinite order in the L2

sense at 0, then u vanishes identically.

To prove Theorem 5.1, we need a few preparation lemmas.

Lemma 5.2. Let u ∈ L2 near 0 ∈ Cn, and vanishes to infinite order in the L2 sense at 0. Then
for each M > 0, u

|z|M ∈ L2 near 0, and vanishes to infinite order in the L2 sense at 0.

Proof. For each m ≥ 1 and ϵ > 0, by the L2 flatness of u at 0, there exists δ > 0 such that for
0 < r ≤ δ, ∫

|z|<r

|u|2dvz ≤ ϵrm+2M .

Then for 0 < r ≤ δ,∫
|z|<r

|u|2

|z|2M
dvz =

∞∑
j=1

∫
r

2j
<|z|< r

2j−1

|u|2

|z|2M
dvz ≤

∞∑
j=1

22Mj

r2M

∫
r

2j
<|z|< r

2j−1

|u|2dvz

≤
∞∑
j=1

22Mj

r2M

∫
|z|< r

2j−1

|u|2dvz ≤ ϵ
∞∑
j=1

22Mj

r2M
rm+2M

2(m+2M)(j−1)

=ϵ22Mrm
∞∑
j=1

2−m(j−1) ≤ ϵ22M+1rm.

In particular, u
|z|M ∈ L2 near 0, and vanishes to infinite order in the L2 sense at 0.

Lemma 5.3. Let Ω be a domain in Cn and 0 ∈ Ω. Assume that u ∈ L2
loc(Ω) and is holomorphic

in Ω \ {0}. If u vanishes to infinite order in the L2 sense at 0, then u ≡ 0.

Proof. Write u in terms of the Laurent expansion u(z) =
∑

α∈Zn aαz
α near 0 for some constants

aα, α = (α1, . . . , αn) ∈ Zn. Then for each 0 < r << 1,∫
|z|<r

|u|2dvz =
∫
|z|<r

∑
α,β∈Zn

aαaβz
αzβdvz =

∑
α∈Zn

|aα|2
∫
|z|<r

|z1|2α1 · · · |zn|2αndvz.

The L2 integrability of u near 0 leads to aα = 0 for any α = (α1, . . . , αn) with some αj < 0. Thus
u is holomorphic on Ω. By Lemma 3.2, we further see u ≡ 0.
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Lemma 5.4. Let Ω be a bounded domain in Cn and 0 ∈ Ω. For any α, β > 0 with α + β = 2n,
there exists some constant C > 0 such that∫

Ω

dvζ
|ζ|α|ζ − z|β

≤ C (1 + |ln |z||) , z ∈ Ω.

Proof. Fix z ∈ Ω and let t := |z|. Let r0 > 0 be large such that Ω ⊂ Br0 . For all ζ ∈ Ω \ B2t,
|ζ − z| ≥ |ζ| − t ≥ |ζ| − 1

2
|ζ| = 1

2
|ζ|. Hence∫

Ω\B2t

dvζ
|ζ|α|ζ − z|β

≤ 2β
∫
Ω\B2t

dvζ
|ζ|α+β

≤ 2β
(∫ r0

2t

dr

r

)
w2n−1 ≤ C1 (1 + |ln t|)

for some constant C1 > 0 independent of z. On the other hand, writing z = tz0 with z0 ∈ S2n−1

and applying a change of coordinates ζ = tη, we have∫
B2t

dvζ
|ζ|α|ζ − z|β

=
1

tα+β−2n

∫
B2

dvη
|η|α|η − z0|β

=

∫
B2

dvη
|η|α|η − z0|β

=

∫
B 1

2

dvη
|η|α|η − z0|β

+

∫
B2\B 1

2

dvη
|η|α|η − z0|β

≤2β
∫
B 1

2

dvη
|η|α

+ 2α
∫
B2\B 1

2

dvη
|η − z0|β

≤ C2

for some constant C2 > 0 independent of z. Altogether, we get the desired inequality.

Let us begin with the case when the source dimension n = 1. In fact, we shall prove the unique
continuation for a larger class of potentials, which take on a hybrid form involving both powers of
1
|z| and Lebesgue integrable functions. Note that none of these potentials below belongs to L2

loc.

Theorem 5.5. Let Ω be a domain in C containing 0 and 1 < β < ∞. Suppose u : Ω → C with
u ∈ H1

loc(Ω), and satisfies

|∂̄u| ≤ Ṽ

|z|
β−1
β

|u| a.e. on Ω

for some Ṽ ∈ L2β
loc(Ω). If u vanishes to infinite order in the L2 sense at 0, then u vanishes

identically.

Proof. Firstly, u ∈ Lp
loc(Ω) for all p <∞ by Sobolev embedding theorem. Since Ṽ ∈ L2β

loc(Ω) with

2β > 2, we have Ṽ |z|
1−β
β u ∈ Lp0

loc(Ω \ {0}) for some p0 > 2 by Hölder’s inequality. Thus by the
ellipticity Lemma 3.1, u ∈ W 1,p0

loc (Ω \ {0}) ⊂ C0(Ω \ {0}), the space of continuous functions on
Ω \ {0}, as a consequence of Sobolev embedding theorem.

For any subdomain Ω̃ ⊂⊂ Ω containing 0, set S := {z ∈ Ω̃ \ {0} : u(z) = 0} and let

V :=

{
∂̄u
u
, on (Ω̃ \ {0}) \ S;

0, on S ∪ {0}.

Then
∂̄u = V u on (Ω̃ \ {0}) \ S (5.2)
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in the sense of distributions. Since |V | ≤ Ṽ |z|
1−β
β ∈ Lq(Ω̃) for all 1 ≤ q < 2, letting

f(z) :=
1

π

∫
Ω

V (ζ)

ζ − z
dvζ , z ∈ Ω̃,

one has
∂̄f = V on Ω

in the sense of distributions. See, for instance, [16]. Moreover, by Hölder’s inequality and Lemma
5.4 with n = 1,

|f(z)| ≤ ∥Ṽ ∥L2β(Ω̃)

(∫
Ω̃

dvζ

|ζ|
2β−2
2β−1 |ζ − z|

2β
2β−1

) 2β−1
2β

≤M (1 + |ln |z||) , z ∈ Ω̃

for some constant M > 0. Hence there exists some C > 0 such that∣∣e−f
∣∣ ≤ C

|z|M
on Ω̃. (5.3)

On the other hand, restricting on Ω̃\{0}, we have V ∈ L2β
loc(Ω̃\{0}). Hence f ∈ W 1,2β

loc (Ω̃\{0})
by Lemma 3.1, and further f ∈ C0(Ω̃ \ {0}). Applying Proposition 2.1 to f on Ω̃ \ {0}, we get

∂̄e−f = −e−fV on Ω̃ \ {0} (5.4)

in the sense of distributions.
Let h := ue−f on Ω̃ \ {0}. Then h ∈ C0(Ω̃ \ {0}). Repeating a similar argument as in the

proof of Theorem 1.2 to h on (Ω̃ \ {0}) \ S, and using (5.2) and (5.4), one can further show that
∂̄h = 0 on (Ω̃ \ {0}) \ S. Noting that f ∈ C0(Ω̃ \ {0}), we have S = h−1(0) and so ∂̄h = 0 on
(Ω̃ \ {0}) \ h−1(0). By Rado’s theorem, h is holomorphic on Ω̃ \ {0}. On the other hand, since u
vanishes to infinite order in the L2 sense at 0, by (5.3) and Lemma 5.2, h ∈ L2

loc(Ω̃) and vanishes
to infinite order in the L2 sense at 0 as well. As a consequence of Lemma 5.3, h = 0 and thus
u = 0 on Ω̃.

When β = 1, the unique continuation holds due to Theorem 4.1 part 2). When β = ∞,
by employing exactly the same argument as in the proof of Theorem 5.5, with the index β−1

β

replaced by 1 (= limβ→∞
β−1
β
), and Ṽ by a positive constant C, one can obtain the following

unique continuation property. As a result, it resolves Theorem 5.1 for n = 1.

Theorem 5.6. Let Ω be a domain in C containing 0. Suppose u : Ω → C with u ∈ H1
loc(Ω), and

satisfies

|∂̄u| ≤ C

|z|
|u| a.e. on Ω

for some constant C > 0. If u vanishes to infinite order in the L2 sense at 0, then u vanishes
identically.

Next, we address the case where the source dimension n ≥ 1. We first explore some direct
applications of Theorem 5.5 to the unique continuation problem for smooth solutions.
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Proof of Corollary 1.6: Assume that (1.4) fails, say for z0 = 0. Then there exists some V ∈
L2n
loc(U) such that |∂̄u| ≤ V |u| on U . When n = 1, u ≡ 0 on U due to Theorem 4.1 part 2). So we

assume n ≥ 2. Let r be small such that Br ⊂ U . For each ζ ∈ S2n−1, let Ṽ (w) := |w|n−1
n V (wζ)

and v(w) := u(wζ), w ∈ Dr. Then v vanishes to infinite order at 0 in the L2 sense by Lemma 3.2,
and satisfies

|∂̄v(w)| = |ζ · ∂̄u(wζ)| ≤ V (wζ)|u(wζ)| = |w|−
n−1
n Ṽ (w)|v(w)|, w ∈ Dr.

Moreover, for a.e. ζ ∈ S2n−1, Ṽ ∈ L2n
loc(Dr) by Lemma 4.2. Theorem 5.5 with β = n applies to

give v = 0 on Dr for a.e. ζ ∈ S2n−1. Hence u = 0 on Br. The weak unique continuation property
Theorem in 4.1 part 1) further leads to u ≡ 0 on U .

Theorem 5.5 also allows us to recover a similar result as in Theorem 1.1 for smooth solutions
without imposing the ∂̄-closedness assumption on the potential.

Corollary 5.7. Let Ω be a domain in Cn. Suppose u : Ω → C with u ∈ C∞(Ω), and satisfies
|∂̄u| ≤ V |u| a.e. on Ω for some V ∈ L2n

loc(Ω). If u vanishes to infinite order at some z0 ∈ Ω, then
u vanishes identically.

Proof. Let r be small such that Br ⊂ Ω. As in the proof of Corollary 1.6, for each fixed ζ ∈ S2n−1,
let Ṽ (w) := |w|n−1

n V (wζ) and v(w) := u(wζ), w ∈ Dr. Then v vanishes to infinite order at 0 in
the L2 sense, and satisfies

|∂̄v(w)| ≤ |w|−
n−1
n Ṽ (w)|v(w)|, w ∈ Dr.

For a.e. ζ ∈ S2n−1, we apply Theorem 5.5 to get v = 0 on Dr. Hence u = 0 on Br. The weak
unique continuation property further gives u ≡ 0.

We are now in a position to prove Theorem 5.1 for H1
loc solutions. We shall use the following

special case of [8, Theorem A] concerning the zero set of solutions to (1.3) with bounded potentials.

Theorem 5.8. [8] Let Ω be a domain in Cn. Suppose u : Ω → C with u ∈ C0(Ω), and satisfies
|∂̄u| ≤ C|u| a.e. on Ω for some constant C > 0. Then the zero set u−1(0) of u is a complex
analytic variety.

Proof of Theorem 5.1: The n = 1 case was proved in Theorem 5.6. So we assume n ≥ 2. According
to Sobolev embedding theorem, u ∈ Lq∗

loc(Ω) for q∗ = 2n
n−1

. The ellipticity Lemma 3.1 of ∂̄ and

the inequality |∂̄u| ≤ C
|z| |u| ∈ Lq∗(Ω \ {0}) further ensures u ∈ W 1,q∗

loc (Ω \ {0}), and thus u ∈ Lq∗∗

with q∗∗ = 2n
n−2

. Employing a boot-strap argument eventually gives u ∈ W 1,q0
loc (Ω \ {0}) for some

q0 > 2n. In particular, u ∈ C0(Ω \ {0}).
Set S := {z ∈ Ω \ {0} : u(z) = 0}. Let

V :=

{
∂̄u
u
, on (Ω \ {0}) \ S;

0, on S ∪ {0}.

Then
∂̄u = V u on (Ω \ {0}) \ S (5.5)

in the sense of distributions. One can also verify that

∂̄V = 0 on (Ω \ {0}) \ S (5.6)
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in the sense of distributions. In fact, given a subdomain U ⊂⊂ (Ω \ {0}) \ S, since u ∈ W 1,q0
loc (Ω \

{0}) ⊂ C0(Ω \ {0}), |u| > c on U for some constant c > 0. Letting {uj}∞j=1 ∈ C∞(U) → u in the
W 1,q0(U) norm. In particular, uj → u in the C0(U) norm. Thus by passing to a subsequence, we

can assume |uj| > c
2
on U . Let Vj :=

∂̄uj

uj
on U . Clearly ∂̄Vj = 0 on U . Moreover,

∥Vj − V ∥L1(U) =

∥∥∥∥ ∂̄ujuj − ∂̄u

u

∥∥∥∥
L1(U)

≤
∥∥∥∥ 1

uj
(∂̄uj − ∂̄u)

∥∥∥∥
L1(U)

+

∥∥∥∥( 1

uj
− 1

u

)
∂̄u

∥∥∥∥
L1(U)

≤2

c

∥∥∂̄uj − ∂̄u
∥∥
L1(U)

+
2

c2
∥uj − u∥C0(U)

∥∥∂̄u∥∥
L1(U)

→ 0

as j → ∞. In particular, Vj → V in the sense of distributions. Thus the ∂̄-closedness passes onto
V on (Ω \ {0}) \ S.

Since |V | ≤ C
|z| ∈ L∞

loc(Ω \ {0}), according to Theorem 5.8, S is a complex analytic variety in

Ω \ {0}. If S = Ω \ {0}, then we are done. Otherwise, S is of complex dimension less than n.
Since n ≥ 2, V ∈ L2

loc(Ω). Applying a removable singularity result of Demailly [6, Lemma 6.9] to
(5.6),

∂̄V = 0 on Ω (5.7)

in the sense of distributions. On the other hand, noting that u ∈ L2
loc(Ω) and V u ∈ L1

loc(Ω), we
can apply Demailly’s result to (5.5) and obtain

∂̄u = V u on Ω (5.8)

in the sense of distributions.
Let f0, u0 and v0 be as in (3.3) with V defined above. Then ∂̄f0 = V on Br in the sense of

distributions for some r > 0. Restricting on Br \ {0}, use the ellipticity Lemma 3.1 to further
obtain f0 ∈ W 1,p

loc (Br \ {0}) for all p < ∞. Hence we can apply Proposition 2.1 to f0 on Br \ {0}
and get

∂̄e−f0 = −e−f0V on Br \ {0} (5.9)

in the sense of distributions. Let

h := ue−f0 on Br \ {0}.

Repeating a similar argument as in the proof of Theorem 1.2 to h on Br \ {0}, and using (5.8)
and (5.9), one can further show that

∂̄h = 0 on Br \ {0}.

Namely, h is holomorphic on Br \ {0}.
On the other hand, by the construction of f0 in Lemma 3.1 and the fact that |V | ≤ C

|z| on Ω,
we have v0 to be bounded on B r

2
. Moreover, apply Lemma 5.4 to u0 and get

|f0(z)| ≤ C

(
1 +

∫
Br

dvζ
|ζ||ζ − z|2n−1

)
≤M (1 + | ln |z||) , z ∈ B r

2

for some constant M > 0. Hence there exists some C1 > 0 such that∣∣e−f0
∣∣ ≤ C1

|z|M
on B r

2
. (5.10)
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Since u vanishes to infinite order in the L2 sense at 0, by (5.10) and Lemma 5.2, h ∈ L2
loc(Br) and

vanishes to infinite order in the L2 sense at 0 as well. As a consequence of Lemma 5.3, h = 0 on
Br and thus u(= ef0h) = 0 on Br. Since

C
|z| ∈ L∞

loc(Ω\{0}), applying the weak unique continuation

property of |∂̄u| ≤ V |u| on Ω \ {0} with L∞
loc potentials, one further gets u ≡ 0.

Remark 5.9. It should be pointed out that, although the statement of [8, Theorem A] does not
explicitly mention it, the ∂̄-closedness of V as indicated in (5.7) near S has already been established
in its proof towards the analyticity of the zero set S. We opt to utilize the statement directly and
subsequently employ Demailly’s result to demonstrate it for the convenience of readers.

6 Unique continuation for potentials involving 1
|z| for N ≥ 2

In this section, we study the unique continuation for a H1
loc(Ω) solution u : Ω → CN to the

inequality

|∂̄u| ≤ C

|z|
|u| a.e. on Ω,

when the target dimension N ≥ 2. As stated in Theorem 5.1, the unique continuation property
holds true when N = 1 for any constant multiple C > 0 in the potential. However, when N ≥ 2,
this property no longer holds in general if C is large, as indicated by an example below of the first
author and Wolff in [14]. See also [1] by Alinhac and Baouendi for an alternative example.

Example 5. Let v0 : C → C be the nontrivial smooth scalar function constructed in [14] that

vanishes to infinite order at 0 and satisfies |△v0| ≤ C♯

|z| |∇v0| on C for some constant C♯ > 0.

Letting u0 := (∂ℜv0, ∂ℑv0), then u0 : C → C2 is smooth, vanishes to infinite order at 0, and

satisfies |∂̄u0| ≤ C♯

2|z| |u0| on C.

In spite of Example 5, we shall prove that the unique continuation property still holds if the
constant multiple C is small enough.

Theorem 6.1. Let Ω be a domain in C and 0 ∈ Ω. Let u : Ω → CN with u ∈ H1
loc(Ω), and satisfy

|∂̄u| ≤ C
|z| |u| a.e. on Ω for some positive constant C < 1

4
. If u vanishes to infinite order in the L2

sense at 0, then u vanishes identically.

In order to prove Theorem 6.1, we need to establish a Carleman inequality for ∂̄ (and its
conjugate ∂), making use of a Fourier analysis method, along with the following lemma.

Lemma 6.2. Let f : (−∞, 0) → CN with f ∈ C∞
c ((−∞, 0)). Then for any λ, k ∈ R,∫ 0

−∞
e−2λt |(∂t + k)f(t)|2 dt ≥ (λ+ k)2

∫ 0

−∞
e−2λt|f(t)|2dt.

Proof. Letting g(t) := e−λtf(t), t ∈ (−∞, 0), then its derivative gt = e−λt(ft − λf), and further

e−λt(∂t + k)f = e−λt(ft + kf) = gt + (λ+ k)g = (∂t + λ+ k)g.
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Consequently,∫ 0

−∞
e−2λt |(∂t + k)f(t)|2 dt =

∫ 0

−∞
|(∂t + λ+ k)g(t)|2 dt

=

∫ 0

−∞
|gt(t)|2dt+ (λ+ k)2

∫ 0

−∞
|g(t)|2dt+ 2(λ+ k)Re

∫ 0

−∞
⟨gt(t), g(t)⟩dt

≥(λ+ k)2
∫ 0

−∞
e−2λt|f(t)|2dt+ 2(λ+ k)Re

∫ 0

−∞
⟨gt(t), g(t)⟩dt.

Note that since g ∈ C∞
c ((−∞, 0)),

0 =

∫ 0

−∞

d

dt
(|g|2)dt = 2Re

(∫ 0

−∞
⟨gt, g⟩dt

)
.

We obtain the desired inequality.

Proposition 6.3. For any u : C → CN with u ∈ H1(C) and supported outside a neighborhood of
0, and for any λ ∈ Z+

{
1
2

}
, ∫

C

|u(z)|2

|z|2λ+2
dvz ≤ 16

∫
C

|∂u(z)|2

|z|2λ
dvz (6.1)

and ∫
C

|u(z)|2

|z|2λ+2
dvz ≤ 16

∫
C

|∂̄u(z)|2

|z|2λ
dvz.

Proof. We shall only prove (6.1) in terms of ∂u, as ∂̄u = ∂ū. Since the proof involves derivatives
on other variables as well, we use uz instead of ∂u to emphasize its derivative with respect to z.

First, we consider u ∈ C∞
c (C \ {0}). Since the inequality is scaling-invariant, without loss

of generality we assume u is supported inside the unit disc D1. Let v(t, θ) := u(et+iθ), t ∈
(−∞, 0), θ ∈ (0, 2π). Write the Fourier series of v as

v(t, θ) =
∑
k∈Z

vk(t)e
ikθ,

where

vk(t) :=
1

2π

∫ 2π

0

v(t, θ)e−ikθdθ ∈ C∞
c ((−∞, 0)).

According to the Parseval’s identity,∫ 2π

0

|v(t, θ)|2dθ = 2π
∑
k∈Z

|vk(t)|2. (6.2)

Then under the coordinate change r = et, we have∫
D1

|u(z)|2

|z|2λ+2
dvz =

∫ 2π

0

∫ 1

0

r−2λ−1|u(r, θ)|2drdθ =
∫ 2π

0

∫ 0

−∞
e(−2λ−1)t|v(t, θ)|2etdtdθ

=

∫ 0

−∞

∫ 2π

0

e−2λt|v(t, θ)|2dθdt.
(6.3)

20



On the other hand, note that for z = eteiθ, one has z∂z = 1
2
(∂t − i∂θ). Thus et+iθvz = zvz =

1
2
(∂t − i∂θ) v = 1

2

∑
k∈Z(∂t + k)vk(t)e

ikθ and∫ 2π

0

|etvz(t, θ)|2dθ =
π

2

∑
k∈Z

|(∂t + k)vk(t)|2 .

Hence∫
D1

|uz(z)|2

|z|2λ
dvz =

∫ 2π

0

∫ 1

0

r−2λ+1|uz(reiθ)|2drdθ =
∫ 2π

0

∫ 0

−∞
e−2λt+2t|vz(t, θ)|2dtdθ

=

∫ 0

−∞
e−2λt

∫ 2π

0

|etvz(t, θ)|2dθdt =
π

2

∑
k∈Z

∫ 0

−∞
e−2λt |(∂t + k)vk(t)|2 dt.

Applying Lemma 6.2 to vk and making use of the fact that (λ + k)2 ≥ 1
4
whenever λ ∈ Z +

{
1
2

}
and k ∈ Z,∫

D1

|uz(z)|2

|z|2λ
dvz ≥

π

2

∑
k∈Z

(λ+ k)2
∫ 0

−∞
e−2λt |vk(t)|2 dt ≥

π

8

∑
k∈Z

∫ 0

−∞
e−2λt |vk(t)|2 dt

=
1

16

∫ 0

−∞

∫ 2π

0

e−2λt|v(t, θ)|2dθdt.

Here in the last line we also used (6.2). The inequality (6.1) for u ∈ C∞
c (C \ {0}) is proved by

combining the above inequality with (6.3).
For general u ∈ H1(C) in the proposition, let r > 0 be small such that the support of u

is outside Dr. Pick a family uj ∈ C∞
c (C \ Dr) → u in H1(C) norm. Then applying (6.1) to

uj ∈ C∞
c (C \ {0}), we get(∫

C

|u(z)|2

|z|2λ+2
dvz

) 1
2

≤
(∫

C\Dr

|u(z)− uj(z)|2

|z|2λ+2
dvz

) 1
2

+

(∫
C

|uj(z)|2

|z|2λ+2
dvz

) 1
2

≤r−λ−1

(∫
C
|u(z)− uj(z)|2dvz

) 1
2

+ 4

(∫
C

|(uj)z(z)|2

|z|2λ
dvz

) 1
2

.

Since (∫
C

|(uj)z(z)|2

|z|2λ
dvz

) 1
2

≤
(∫

C\Dr

|uz(z)− (uj)z(z)|2

|z|2λ
dvz

) 1
2

+

(∫
C

|uz(z)|2

|z|2λ
dvz

) 1
2

≤r−λ

(∫
C
|uz(z)− (uj)z(z)|2dvz

) 1
2

+

(∫
C

|uz(z)|2

|z|2λ
dvz

) 1
2

,

one thus has(∫
C

|u(z)|2

|z|2λ+2
dvz

) 1
2

≤
(
r−λ−1 + 4r−λ

)
∥u− uj∥H1(C) + 4

(∫
C

|uz(z)|2

|z|2λ
dvz

) 1
2

.

Letting j → ∞, we have the desired inequality (6.1) for u ∈ H1(C) with support away from 0.

By employing an induction process along with a similar argument as in the proof to Proposition
6.3, one can further get the following higher order edition.
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Corollary 6.4. Let k, l ∈ Z+ with k ≤ l, and λ ∈ Z +
{

1
2

}
. For any u : C → CN with

u ∈ H l
loc(C) and supported outside a neighborhood of 0, and any 2-tuples α = (α1, α2), β = (β1, β2)

with |α| = k, |β| = l and αj ≤ βj, j = 1, 2, there exists a constant C dependent only on l such that∫
C

|∂α1 ∂̄α2u(z)|2

|z|2λ+2(l−k)
dvz ≤ C

∫
C

|∂β1 ∂̄β2u(z)|2

|z|2λ
dvz.

Proof of Theorem 6.1: Let r > 0 be small such that D2r ⊂⊂ Ω. Choose η ∈ C∞
c (C) with η = 1

on Dr, 0 ≤ η ≤ 1 and |∇η| ≤ 2
r
on D2r \Dr, and η = 0 outside D2r. Let ψ ∈ C∞(C) be such that

ψ = 0 in D1, 0 ≤ ψ ≤ 1 and |∇ψ| ≤ 2 on D2 \D1, and ψ = 1 outside D2. For each k ≥ 4
r
(thus

2
k
≤ r

2
), let ψk = ψ(k·) and uk = ψkηu. Then uk ∈ H1(C) with support outside D 1

k
.

Since C < 1
4
, one can choose ϵ0 > 0 with

16(1 + 2ϵ0)C
2 < 1. (6.4)

Making use of the following elementary inequality

(a+ b+ c)2 ≤ (1 + 2ϵ)a2 + (2 + ϵ−1)b2 + (2 + ϵ−1)c2, for all a, b, c ∈ R, ϵ > 0,

together with Proposition 6.3 and the inequality (5.1), we have for each λ ∈ Z+
{

1
2

}
,∫

D2r

|uk(z)|2

|z|2λ
dvz ≤16

∫
D2r

|∂̄uk(z)|2

|z|2λ−2
dvz

≤16(1 + 2ϵ0)

∫
D2r

|ψk(z)η(z)|2|∂̄u(z)|2

|z|2λ−2
dvz + 16(2 + ϵ−1

0 )

∫
Dr

|∂̄ψk(z)|2|u(z)|2

|z|2λ−2
dvz

+ 16(2 + ϵ−1
0 )

∫
D2r\Dr

|∂̄η(z)|2|u(z)|2

|z|2λ−2
dvz

≤16(1 + 2ϵ0)C
2

∫
D2r

|uk(z)|2

|z|2λ
dvz + 16(2 + ϵ−1

0 )

∫
Dr

|∂̄ψk(z)|2|u(z)|2

|z|2λ−2
dvz

+ 16(2 + ϵ−1
0 )

∫
D2r\Dr

|∂̄η(z)|2|u(z)|2

|z|2λ−2
dvz.

Noting that (6.4) holds, one can subtract 16(1 + 2ϵ0)C
2
∫
D2r

|uk(z)|2
|z|2λ dvz from both sides and get∫

D2r

|uk(z)|2

|z|2λ
dvz ≤ C0

(∫
Dr

|∇ψk(z)|2|u(z)|2

|z|2λ−2
dvz +

∫
D2r\Dr

|∇η(z)|2|u(z)|2

|z|2λ−2
dvz

)
, (6.5)

where

C0 :=
16(2 + ϵ−1

0 )

1− 16(1 + 2ϵ0)C2
> 0.

Next, we show that

lim
k→∞

∫
Dr

|∇ψk(z)|2|u(z)|2

|z|2λ−2
dvz = 0. (6.6)

Indeed, since ∇ψk is only supported on D 2
k
\D 1

k
,∫

Dr

|∇ψk(z)|2|u(z)|2

|z|2λ−2
dvz ≤

∫
1
k
<|z|< 2

k

|∇ψk(z)|2|u(z)|2

|z|2λ−2
dvz ≤ k2λ

∫
|z|< 2

k

|u(z)|2dvz → 0
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as k → ∞, as a consequence of the flatness of u at 0 in the L2 sense.
Letting k → ∞ in (6.5), and making use of (6.6) and Fatou’s Lemma, we obtain that∫

D2r

|η(z)u(z)|2

|z|2λ
dvz ≤ C0

∫
D2r\Dr

|∇η(z)|2|u(z)|2

|z|2λ−2
dvz.

Since ∫
D2r

|η(z)u(z)|2

|z|2λ
dvz ≥

∫
D r

2

|u(z)|2

|z|2λ
dvz ≥

(
2

r

)2λ ∫
D r

2

|u(z)|2dvz

and ∫
D2r\Dr

|∇η(z)|2|u(z)|2

|z|2λ−2
dvz ≤

1

r2λ−2

∫
D2r\Dr

|∇η(z)|2|u(z)|2dvz,

we have ∫
D r

2

|u(z)|2dvz ≤
C0r

2

22λ

∫
D2r\Dr

|∇η(z)|2|u(z)|2dvz.

Letting λ → ∞, we see u = 0 on D r
2
. Finally, apply the unique continuation property Theorem

4.1 part 1) to get u ≡ 0.

Proof of Theorem 1.5: Let r be small such that Br ⊂⊂ Ω. For each fixed ζ ∈ S2n−1, let v(w) :=
u(wζ), w ∈ Dr. Then v vanishes to infinite order in the L2 sense at 0 and satisfies

|∂̄v(w)| = |ζ · ∂̄u(wζ)| ≤ C

|w|
|u(wζ)| = C

|w|
|v(w)|, w ∈ Dr.

For a.e. ζ ∈ S2n−1, we apply Theorem 5.1 when N = 1, or Theorem 6.1 when N ≥ 2 and C < 1
4
,

to get v = 0 on Dr. Hence u = 0 on Br in either case. The weak unique continuation property
further applies to give u ≡ 0.

7 Proof of Theorem 1.4

In this section, we prove Theorem 1.4 – the unique continuation property for |∂̄u| ≤ V |u| on
Ω ⊂ C2, with the target dimension N ≥ 1, and V ∈ L4

loc. As already seen in Section 4, its proof
can be reduced to that of the following theorem on the complex plane.

Theorem 7.1. Let Ω be a domain in C and 0 ∈ Ω. Suppose u : Ω → CN with u ∈ H1
loc(Ω), and

satisfies
|∂̄u| ≤ |z|−

1
2V |u| a.e. on Ω (7.1)

for some V ∈ L4
loc(Ω). If u vanishes to infinite order in the L2 sense at 0, then u vanishes

identically.

Note that the N = 1 case in Theorem 7.1 is a special case that has been proved in Theorem
5.5. On the other hand, since |z|− 1

2V /∈ L2
loc(Ω) given a general V ∈ L4

loc(Ω), Theorem 4.1 does
not apply.

The key element in proving Theorem 7.1 involves an idea in [15] that utilizes the Cauchy
integral, coupled with the technique employed in establishing Theorem 6.1. To begin with, let
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us recall a representation formula for u ∈ H1(C) with compact support in terms of the Cauchy
kernel:

u(z) =
1

π

∫
C

∂̄u(ζ)

z − ζ
dvζ , a.e. z ∈ C. (7.2)

See, for instance, [15, Lemma 3.1]. Denote by ∥f∥L2
V (Ω) the weighted L2(Ω) norm of a function f

on Ω ⊂ C with respect to a weight V > 0, with

∥f∥L2
V (Ω) :=

(∫
Ω

|f(z)|2V (z)dvz

) 1
2

.

It was proved in [15, Theorem 2.2] that, given a positive function V ∈ L2(C), the Riesz potential

I1f =

∫
C

f(ζ)

|ζ − ·|
dvζ

is a bounded operator from L2
V −1(C) to L2

V (C). More precisely, there exists a universal constant
C0 such that for any f ∈ L2

V −1(C),

∥I1f∥L2
V (C) ≤ C0∥V ∥L2(C)∥f∥L2

V −1 (C). (7.3)

Proof of Theorem 7.1: Fix an r > 0 small such that D2r ⊂⊂ Ω, and∥∥∥∥V χDr +
r

1 + |z|2

∥∥∥∥4
L4(C)

≤ π2

32C2
0

,

where C0 is the universal constant in (7.3), and χDr is the characteristic function for Dr. Replacing
V by V χDr +

r
1+|z|2 , we have (7.1) holds on D2r with V ∈ L4(C),

V > 0 on C; V ≥ Cr on D2r (7.4)

for some Cr > 0 dependent only on r, and

∥V ∥4L4(C) ≤
π2

32C2
0

. (7.5)

We shall show that u = 0 on D r
2
.

Let η and ψk be as defined in the proof of Theorem 6.1. Then uk := ψkηu ∈ H1(C) and is
supported inside D2r \D 1

k
. So is uk

zm
for each m ∈ Z+. Applying (7.2) to uk

zm
, we obtain

|uk(z)|2

|z|2m
=

1

π2

∣∣∣∣∫
C

∂̄uk(ζ)

(z − ζ)ζm
dvζ

∣∣∣∣2 , z ∈ D2r,

and with Ṽ := V 2, one has∫
D2r

|uk(z)|2

|z|2m
Ṽ (z)dvz ≤

1

π2

∫
D2r

(∫
C

1

|z − ζ|
|∂̄uk(ζ)|
|ζ|m

dvζ

)2

Ṽ (z)dvz ≤
1

π2

∥∥∥∥I1( |∂̄uk|
| · |m

)∥∥∥∥2
L2
Ṽ
(C)
.
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Make use of (7.3) with respect to the weight Ṽ to further infer∫
D2r

|uk(z)|2

|z|2m
Ṽ (z)dvz

≤C
2
0

π2
∥Ṽ ∥2L2(C)

∫
C

|∂̄ (ψk(z)η(z)u(z)) |2

|z|2mṼ (z)
dvz

≤C
2
0

π2
∥V ∥4L4(C)

(∫
D2r

|∂̄ψk(z)|2|u(z)|2

|z|2mṼ (z)
dvz +

∫
Dr

|ψk(z)|2|∂̄u(z)|2

|z|2mṼ (z)
dvz +

∫
D2r\Dr

|∂̄ (η(z)u(z)) |2

|z|2mṼ (z)
dvz

)
= : A+B + C.

(7.6)

Note that for B, by the inequalities (7.1) and (7.5)

B ≤ C2
0

π2
∥V ∥4L4(C)

∫
Dr

|ψk(z)|2|u(z)|2

|z|2m+1
dvz ≤

1

32

∫
D2r

|uk(z)|2

|z|2m+1
dvz.

Thus we apply Theorem 6.3 with λ = m− 1
2
to have

B ≤1

2

∫
D2r

|∂̄uk(z)|2

|z|2m−1
dvz

≤1

2

∫
D2r

|ψk(z)η(z)|2|∂̄u(z)|2

|z|2m−1
dvz +

1

2

∫
Dr

|∂̄ψk(z)|2|u(z)|2

|z|2m−1
dvz +

1

2

∫
D2r\Dr

|∂̄η(z)|2|u(z)|2

|z|2m−1
dvz

≤1

2

∫
D2r

|uk(z)|2

|z|2m
Ṽ (z)dvz +

1

2

∫
Dr

|∂̄ψk(z)|2|u(z)|2

|z|2m−1
dvz +

1

2

∫
D2r\Dr

|∂̄η(z)|2|u(z)|2

|z|2m−1
dvz

= : I1 + I2 + I3.

Here we used (7.1) in the third inequality. Combining (7.6) with the above,∫
D2r

|uk(z)|2

|z|2m
Ṽ (z)dvz ≤ A+ C + I1 + I2 + I3.

One further subtracts I1 from both sides to get∫
D2r

|uk(z)|2

|z|2m
Ṽ (z)dvz ≤ 2A+ 2C + 2I2 + 2I3. (7.7)

Similarly as in the proof to (6.6) along with the fact that Ṽ ≥ C2
r on D2r, one has

lim
k→∞

A = lim
k→∞

I2 = 0.

Together, after passing k → ∞ and using Fatou’s Lemma in (7.7), we obtain∫
D2r

|η(z)|2|u(z)|2

|z|2m
Ṽ (z)dvz ≤

∫
D2r\Dr

|∂̄ (η(z)u(z)) |2

|z|2mṼ (z)
dvz +

∫
D2r\Dr

|∂̄η(z)|2|u(z)|2

|z|2m−1
dvz. (7.8)

Now multiply two sides of (7.8) by r2m. On the left hand side,∫
D2r

r2m|η(z)|2|u(z)|2

|z|2m
Ṽ (z)dvz ≥

∫
D r

2

r2m

|z|2m
|u(z)|2Ṽ (z)dvz ≥ 22m

∫
D r

2

|u(z)|2Ṽ (z)dvz.
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On the right hand side, using the fact that Ṽ ≥ C2
r on D2r again,∫

D2r\Dr

r2m|∂̄ (η(z)u(z)) |2

|z|2mṼ (z)
dvz +

∫
D2r\Dr

r2m|∂̄η(z)|2|u(z)|2

|z|2m−1
dvz

≤ 1

C2
r

∫
D2r\Dr

|∂̄ (η(z)u(z)) |2dvz + r

∫
D2r\Dr

|∇η(z)|2|u(z)|2dvz ≤ C̃r∥u∥2H1(D2r)
,

for some C̃r dependent only on r. Thus

22m
∫
D r

2

|u(z)|2Ṽ (z)dvz ≤ C̃r∥u∥2H1(D2r)
.

Letting m → ∞ and making use of the positivity of Ṽ on D r
2
, we have u = 0 on D r

2
. The proof

is thus complete as a consequence of the weak unique continuation property.

Proof of Theorem 1.4: As in the proof to Theorem 1.3 yet with n = 2 and p = 4, let z0 = 0
and r > 0 be small such that V ∈ L4(Br). For each fixed ζ ∈ S3, let Ṽ (w) := |w| 12V (wζ) and
v(w) := u(wζ), w ∈ Dr. Then v vanishes to infinite order at 0 in the L2 sense. Moreover, v
satisfies

|∂̄v(w)| ≤ |w|−
1
2 Ṽ (w)|v(w)|, w ∈ Dr.

Note that for a.e. ζ ∈ S3, Ṽ ∈ L4(Dr) by Lemma 4.2. According to Theorem 7.1, v = 0 on Dr for
a.e. ζ ∈ S3. Hence u = 0 on Br. Apply the weak unique continuation property to get u ≡ 0.

Remark 7.2. The following two questions still remain open. In particular, with an approach
similar as in the proof to Theorem 1.4, the resolution of Question 1 can be converted to that of
Question 2.

1. Let Ω be a domain in Cn, n ≥ 3 and N ≥ 2. Suppose u : Ω → CN is smooth on Ω and satisfies
|∂̄u| ≤ V |u| a.e. on Ω for some V ∈ L2n

loc(Ω). If u vanishes to infinite order at some z0 ∈ Ω, does
u vanish identically?

2. Let Ω be a domain in C containing 0, and n,N ∈ Z+ with n ≥ 3, N ≥ 2. Suppose u : Ω → CN

is smooth on Ω and satisfies |∂̄u| ≤ |z|−n−1
n V |u| a.e. on Ω for some V ∈ L2n

loc(Ω). If u vanishes to
infinite order at 0 ∈ Ω, does u vanish identically?
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